Mục lục lời mở ĐẦU



tải về 2.04 Mb.
trang1/4
Chuyển đổi dữ liệu04.12.2017
Kích2.04 Mb.
#3883
  1   2   3   4

MỤC LỤC

LỜI MỞ ĐẦU

Ngày nay, mạng máy tính đã trở nên quen thuộc với mọi người trong xã hội. Cùng với sự phát triển của công nghệ thông tin và nhu cầu của con người, mạng máy tính cũng càng ngày càng mở rộng và trở thành một phần không thể thiếu ­­­­­của đời sống.

Tuy nhiên, cùng với sự phát triển của mạng máy tính, rất nhiều vấn đề liên quan cũng được đặt ra đối với người sử dụng như lỗi đường truyền, virus, sự tấn công của hacker.... Để góp phần giải quyết những vấn đề này thì việc kiểm soát lượng thông tin vào ra mang một ý nghĩa khá quan trọng. Chính vì vậy em lựa chọn thực hiện đồ án tốt nghiệp là “Xây dựng chương trình kiểm soát lưu lượng thông tin trao đổi qua hệ thống mạng” nhằm mục đích cung cấp một công cụ hữu ích cho việc kiểm soát và học tập về mạng máy tính.

Trong thời gian thực tập em xin chân thành cảm ơn các thầy cô giáo trong khoa Công nghệ thông tin trường Đại học Hàng Hải Việt Nam cùng các bạn trong tập thể lớp CNT46-ĐH và đặc biệt thầy Ngô Quốc Vinh đã giúp đỡ em trong quá trình thực hiện đồ án này.





Hải Phòng tháng 12 năm 2009

Sinh viên: Trần Ngọc Việt

CHƯƠNG I. CƠ SỞ LÝ THUYẾT MẠNG MÁY TÍNH

Để xây dựng một chương trình quản lý, thống kê, kiểm soát lưu lượng thông tin, ta cần thực hiện chặn bắt các gói tin vào ra hệ thống mạng cũng như phân tích các gói tin thu được. (Packet Capture và Packet Analysis). Chương trình như vậy thường được gọi là Sniffer (Packet Analyzer). Để xây dựng được sniffer, ta cần có được hiểu biết cơ bản về mạng máy tính và các giao thức liên quan. Trong phạm vi của đề tài sẽ được thực hiện trên hệ điều hành Window và sử dụng bộ giao thức TCP/IP Ethernet nên trong phần này sẽ trình bày những vấn đề cơ bản nhất của mạng Ethernet.



  1. Tổng Quan Hệ Thống Mạng TCP/IP Ethernet

    1. Khái niệm mạng máy tính

Từ những năm 1960 đã xuất hiện các mạng nối các máy tính và các Terminal để sử dụng chung nguồn tài nguyên, giảm chi phí khi muốn thông tin trao đổi số liệu và sử dụng trong công tác văn phòng một cách tiện lợi.

Với việc tăng nhanh các máy tính mini và các máy tính cá nhân làm tăng yêu cầu truyền số liệu giưã các máy tính, giữa các terminal, và giữa các terminal với máy tính là một trong những động lực thúc đẩy sự ra đời và phát triển ngày càng mạnh mẽ các mạng máy tính.Quá trình hình thành mạng máy tính có thể tóm tắt qua các giai đoạn sau:



Giai đoạn các terminal nối trực tiếp với máy tính:

Đây là giai đoạn đầu tiên của mạng máy tính, để tận dụng công suất của máy tính người ta ghép nối các terminal vào một máy tính được gọi là các máy tính trung tâm.



Giai đoạn các bộ tiền xử lý (Prontal)

Ở giai đoạn 1 máy tính trung tâm quản lý truyền tin tới các terminal, ở giai đoạn 2 máy tính trung tâm quản lý truyền tin tới các bộ tập trung qua các bộ ghép nối điều khiển đường truyền. Ta có thể thay thế bộ ghép nối đường truyền bằng các máy tính nini gọi là prontal, đó chính là bộ tiền xử lý.



Giai đoạn mạng máy tính:

Vào những năm 1970 người ta bắt đầu xây dựng mạng truyền thông trong đó các thành phần chính của nó là các nút mạng gọi là bộ chuyển mạch dùng để hướng thông tin tới đích.

Các mạng được nối với nhau bằng đường truyền còn các máy tính xử lý thông tin của người dùng hoặc các trạm cuối được nối trực tiếp vào các nút mạng để khi cần thì trao đổi thông tin qua mạng. Các nút mạng thương là máy tính nên đồng thời đóng vai trò của người sử dụng.

Chức năng của nút mạng:



  • Quản lý truyền tin, quản lý mạng

Như vậy các máy tính ghép nối với nhau hình thành mạng máy tính, ở đây ta thấy mạng truyền thông cũng ghép nối các máy tính với nhau nên khái niệm mạng maý tính và mạng truyền thông có thể không phân biệt.

Việc hình thành mạng máy tính nhằm đạt các mục đích sau:



  • Tận dụng và làm tăng giá trị của tài nguyên

  • Chinh phục khoảng cách

  • Tăng chất lượng và hiệu quả khai thác và xử lý thông tin

  • Tăng độ tin cậy của hệ thống nhờ khả năng thay thế khi xảy ra sự cố đối với một máy tính nào đó.

Như vậy: Mạng máy tính là tập hợp các máy tính được ghép với nhau bởi các đường truyền vật lý theo một kiến trúc nào đó.

    1. Kiến trúc phân tầng

Để giảm độ phức tạp trong thiết kế và cài đặt mạng, các mạng máy tính được tổ chức thiết kế theo kiểu phân tầng (layering). Trong hệ thống thành phần của mạng được tổ chức thành một cấu trúc đa tầng, mỗi tầng được xây dựng trên tầng trước đó; mỗi tầng sẽ cung cấp một số dịch vụ cho tầng cao hơn. Số lượng các tầng cũng như chức năng của mỗi tầng là tuỳ thuộc vào nhà thiết kế. Ví dụ cấu trúc phân tầng của mạng SNA của IBM, mạng DECnet của Digital, mạng ARPANET. .. là có sự khác nhau. Nguyên tắc cấu trúc của mạng phân tầng là: mỗi hệ thống trong một mạng đều có cấu trúc phân tầng (Số lượng tầng, chức năng của mỗi tầng là như nhau). Mục đích của mỗi tầng là để cung cấp một số dịch vụ nhất định cho tầng cao hơn.

Tầng i của hệ thống A sẽ hội thoại với tầng i của hệ thống B, các quy tắc và quy ước dùng trong hội thoại gọi là giao thức mức I

Giữa hai tầng kề nhau tồn tại một giao diện (interface) xác định các thao tác nguyên thuỷ của tầng dưới cung cấp lên tầng trên.

Trong thực tế dữ liệu không truyền trực tiếp từ tầng i của hệ thống này sang tầng i của hệ thống khác ( trừ tầng thấp nhất trực tiếp sử dụng đường truyền vật lý để truyền các xâu bít (0.1) từ hệ thống này sang hệ thống khác ).Dữ liệu được truyền từ hệ thống gửi (sender) sang hệ thống nhận (receiver) bằng đường truyền vật lý và cứ như vậy dữ liệu lại đi ngược lên các tầng trên. Như vậy khi hai hệ thống liên kết với nhau, chỉ tầng thấp nhất mới có liên kết vật lý còn ở tầng cao hơn chỉ có liên kết logic (liên kết ảo ) được đưa vào để hình thức hoá các hoạt động của mạng thuận tiện cho việc thiết kế và cài đặt các phần mềm truyền thông. Như vậy để viết chương trình cho tầng N, phải biết tầng N+1 cần gì và tầng N -1 có thể làm được gì.



Minh họa kiến trúc phân tầng tổng quát

Nguyên tắc để xây dựng kiến trúc phân tầng như sau:


  • Để đơn giản cần hạn chế số lượng các tầng.

  • Tạo ranh giới các tầng sao cho các tương tác và mô tả các dịch vụ là tối thiểu.

  • Chia các tầng sao cho các chức năng khác nhau được tách biệt với nhau, và các tầng sử dụng các loại công nghệ khác nhau cũng được tách biệt.

  • Các chức năng giống nhau được đặt vào cùng một tầng.

  • Chọn ranh giới các tầng theo kinh nghiệm đã được chứng tỏ là thành công.

  • Các chức năng được định vị sao cho có thể thiết kế lại tầng mà ảnh hưởng ít nhất đến các tầng kế nó.

  • Tạo ranh giới giữa các t­­­ầng sao cho có thể chuẩn hóa giao diện tương ứng.

  • Tạo một tầng khi dữ liệu được xử lý một cách khác biệt.

  • Cho phép thay đổi chức năng hoặc giao thức trong một tầng không làm ảnh hưởng đến các tầng khác.

  • Mỗi tầng chỉ có các ranh giới (giao diện) với các tầng kề trên và kề dưới nó.

  • Có thể chia một tầng thành các tầng con khi cần thiết.

  • Tạo tầng con để cho phép giao diện với các tầng kế cận.

  • Cho phép hủy bỏ các tầng con nếu thấy không cần thiết.

    1. Mô hình OSI

      1. Khái niệm

Do các nhà thiết kế tự do lựa chọn kiến trúc mạng riêng của mình. Từ đó dẫn đến tình trạng không tương thích giữa các mạng về: Phương pháp truy nhập đường truyền khác nhau, họ giao thức khác nhau. ..sự không tương thích đó làm trở ngại cho quá trình tương tác giữa người dùng ở các mạng khác nhau. Nhu cầu trao đổi thông tin càng lớn thì trở ngại đó càng không thể chấp nhận được với người sử dụng. Với lý do đó tổ chức chuẩn hoá quốc tế ISO đã thành lập một tiểu ban nhằm xây dựng một khung chuẩn về kiến trúc mạng để làm căn cứ cho các nhà thiết kế và chế tạo các sản phẩm mạng. Kết quả là năm 1984 ISO đã đưa ra mô hình tham chiếu cho việc kết nối các hệ thống mở ( Reference Model for Open System Inter - connection) hay gọn hơn là OSI Reference model. Mô hình này được dùng làm cơ sở để kết nối các hệ thống mở.

Mô hình OSI



      1. Mục đích

Mô hình OSI phân chia chức năng của một giao thức ra thành một chuỗi các tầng cấp. Mỗi một tầng cấp có một đặc tính là nó chỉ sử dụng chức năng của tầng dưới nó, đồng thời chỉ cho phép tầng trên sử dụng các chức năng của mình. Một hệ thống cài đặt các giao thức bao gồm một chuỗi các tầng nói trên được gọi là "chồng giao thức" (protocol stack). Chồng giao thức có thể được cài đặt trên phần cứng, hoặc phần mềm, hoặc là tổ hợp của cả hai. Thông thường thì chỉ có những tầng thấp hơn là được cài đặt trong phần cứng, còn những tầng khác được cài đặt trong phần mềm.

Mô hình OSI này chỉ được ngành công nghiệp mạng và công nghệ thông tin tôn trọng một cách tương đối. Tính năng chính của nó là quy định về giao diện giữa các tầng cấp, tức qui định đặc tả về phương pháp các tầng liên lạc với nhau. Điều này có nghĩa là cho dù các tầng cấp được soạn thảo và thiết kế bởi các nhà sản xuất, hoặc công ty, khác nhau nhưng khi được lắp ráp lại, chúng sẽ làm việc một cách dung hòa (với giả thiết là các đặc tả được thấu đáo một cách đúng đắn

Thường thì những phần thực thi của giao thức sẽ được sắp xếp theo tầng cấp, tương tự như đặc tả của giao thức đề ra, song bên cạnh đó, có những trường hợp ngoại lệ, còn được gọi là "đường cắt ngắn" (fast path). Trong kiến tạo "đường cắt ngắn", các giao dịch thông dụng nhất, mà hệ thống cho phép, được cài đặt như một thành phần đơn, trong đó tính năng của nhiều tầng được gộp lại làm một.

Việc phân chia hợp lý các chức năng của giao thức khiến việc suy xét về chức năng và hoạt động của các chồng giao thức dễ dàng hơn, từ đó tạo điều kiện cho việc thiết kế các chồng giao thức tỉ mỉ, chi tiết, song có độ tin cậy cao. Mỗi tầng cấp thi hành và cung cấp các dịch vụ cho tầng ngay trên nó, đồng thời đòi hỏi dịch vụ của tầng ngay dưới nó. Như đã nói ở trên, một thực thi bao gồm nhiều tầng cấp trong mô hình OSI, thường được gọi là một "chồng giao thức".



    1. Phương thức hoạt động

Ở mỗi tầng mô hình trong tầng ISO, có hai phương thức hoạt động chính được áp dụng đó là: phương thức hoạt động có liên kết (connection-oriented) và không có liên kết (connectionless).

Với phương thức có liên kết, trước khi truyền dữ liệu cần thiết phải thiết lập một liên kết logic giữa các thực thể cùng tầng. Còn với phương thức không liên kết thì không cần lập liên kết logic và mỗi đơn vị dữ liệu được truyền là độc lập với các đơn vị dữ liệu trước hoặc sau nó.



      1. Có kết nối (Connection Oriented)

Với phương thức có kết nối, quá trình truyền dữ liệu phải trải qua ba giai đoạn theo thứ tự thời gian.

  • Thiết lập kết nối: hai thực thể đồng mức ở hai hệ thống thương lượng với nhau về tập các tham số sẽ được sử dụng trong giai đoạn sau.

  • Truyền dữ liệu: dữ liệu được truyền với các cơ chế kiểm soát và quản lý.

  • Huỷ bỏ kết nối (logic): giải phóng các tài nguyên hệ thống đã cấp phát cho liên kết để dùng cho các liên kết khác.

Tương ứng với ba giai đoạn trao đổi, ba thủ tục cơ bản được sử dụng, chẳng hạn đối với tầng N có: N-CONNECT ( thiết lập liên kết ), N-DATA(Truyền dữ liệu ), và N-DISCONNECT (Huỷ bỏ kết nối). Ngoài ra còn một số thủ tục phụ được sử dụng tuỳ theo đặc điểm, chức năng của mỗi tầng. Ví dụ:

  • Thủ tục N-RESTART được sử dụng để khởi động lại hệ thống ở tầng 3

  • Thủ tục T-EXPEDITED DATA cho việc truyền dữ liệu nhanh ở tầng 4

  • Thủ tục S-TOKEN GIVE để chuyển điều khiển ở tầng 5. ..

Mỗi thủ tục trên sẽ dùng các hàm nguyên thuỷ (Request, Indication, Response, Confirm) để cấu thành các hàm cơ bản của giao thức ISO.

      1. Không kết nối (Connectionless)

Đối với phương thức không kết nối thì chỉ có duy nhất một giai đoạn đó là: truyền dữ liệu.

So sánh hai phương thức hoạt động trên chúng ta thấy rằng phương thức hoạt động có kết nối cho phép truyền dữ liệu tin cậy, do đó có cơ chế kiểm soát và quản lý chặt chẽ từng kết nối logic. Nhưng mặt khác nó phức tạp và khó cài đặt. Ngược lại, phương thức không kết nối cho phép các PDU (Protocol Data Unit) được truyền theo nhiều đường khác nhau để đi đến đích, thích nghi với sự thay đổi trạng thái của mạng, song lại trả giá bởi sự khó khăn gặp phải khi tập hợp các PDU để di chuyển tới người sử dụng.

Hai tầng kề nhau có thể không nhất thiết phải sử dụng cùng một phương thức hoạt động mà có thể dùng hai phương thức khác nhau.


    1. Bộ giao thức TCP/IP

Mô hình OSI là mô hình tham chiếu được tổ chức ISO xây dựng nhằm tạo một chuẩn phục vụ việc nối kết các hệ thống mở. Tuy nhiên, do nhiều lý do khác nhau mà OSI không được sử dụng trong thực tế mà thay vào đó được sử dụng rộng rãi nhất là mô hình kiến trúc mạng (bộ giao thức) TCP/IP. Hầu như tất cả các hệ điều hành hiện tại đều có cài đặt bộ giao thức TCP/IP. Trong phần này sẽ giới thiệu sơ lược về mô hình TCP/IP.

      1. Khái niệm

Bộ giao thức TCP/IP, ngắn gọn là TCP/IP (tiếng Anh: Internet protocol suite hoặc IP suite hoặc TCP/IP protocol suite - bộ giao thức liên mạng), là một bộ các giao thức truyền thông cài đặt chồng giao thức mà Internet và hầu hết các mạng máy tính thương mại đang chạy trên đó. Bộ giao thức này được đặt tên theo hai giao thức chính của nó là TCP (Giao thức Điều khiển Giao vận) và IP (Giao thức Liên mạng). Chúng cũng là hai giao thức đầu tiên được định nghĩa.

Như nhiều bộ giao thức khác, bộ giao thức TCP/IP có thể được coi là một tập hợp các tầng, mỗi tầng giải quyết một tập các vấn đề có liên quan đến việc truyền dữ liệu, và cung cấp cho các giao thức tầng cấp trên một dịch vụ được định nghĩa rõ ràng dựa trên việc sử dụng các dịch vụ của các tầng thấp hơn. Về mặt lôgic, các tầng trên gần với người dùng hơn và làm việc với dữ liệu trừu tượng hơn, chúng dựa vào các giao thức tầng cấp dưới để biến đổi dữ liệu thành các dạng mà cuối cùng có thể được truyền đi một cách vật lý.



      1. Mục đích và nguồn gốc

Giao tiếp thông tin đã trở thành nhu cầu không thể thiếu trong tất cả mọi lĩnh vực hoạt động. Mạng máy tính tính ra đời phần nào đã đáp ứng được nhu cầu đó. Phạm vi lúc đầu của các mạng bị hạn chế trong một nhóm làm việc, một cơ quan, công ty... trong một khu vực. Tuy nhiên thực tế của của những nhu cầu cần trao đổi thông tin trong nhiều lĩnh vực khác nhau, về nhiều chủ đề khác nhau, giữa các tổ chức, các cơ quan. ..là không có giới hạn. Vì vậy nhu cầu cần kết nối các mạng khác nhau của các tổ chức khác nhau để trao đổi thông tin là thực sự cần thiết. Nhưng thật không may là hầu hết các mạng của các công ty, các cơ quan... đều là các thực thể độc lập, được thiết lập để phục vụ nhu cầu trao đổi thông tin của bản thân các tổ chức đó. Các mạng này có thể được xây dựng từ những kĩ thuật phần cứng khác nhau để phù hợp với những vấn đề giao tiếp thông tin của riêng họ. Điều này chính là một cản trở cho việc xây dựng một mạng chung, bởi vì sẽ không có một kĩ thuật phần cứng riêng nào đủ đáp ứng cho việc xây dựng một mạng chung thoả mãn nhu cầu người sử dụng. Người sử dụng cần một mạng tốc độ cao để nối các máy, nhưng những mạng như vậy không thể được mở rộng trên những khoảng cách lớn. Nhu cầu về một kỹ thuật mới mà có thể kết nối được nhiều mạng vật lý có cấu trúc khác hẳn nhau là thật sự cần thiết. Nhận thức được điều đó, trong quá trình phát triển mạng ARPANET của mình, tổ chức ARPA ( Advanced Research Projects Agency) đã tập trung nghiên cứu nhằm đưa ra một kỹ thuật thoả mãn những yêu cầu trên. Kỹ thuật ARPA bao gồm một thiết lập của các chuẩn mạng xác định rõ những chi tiết của việc làm thế nào để các máy tính có thể truyền thông với nhau cũng như một sự thiết lập các quy ước cho kết nối mạng, lưu thông và chọn đường. Kỹ thuật đó được phát triển đầy đủ và được đưa ra với tên gọi chính xác là TCP/IP Iternet Protocol Suit và thường được gọi tắt là TCP/IP. Dùng TCT/IP người ta có thể kết nối được tất cả các mạng bên trong công ty của họ hoặc có thể kết nối giữa các mạng của các công ty, các tổ chức khác nhau với nhau.

Bộ giao thức TCP/IP gồm nhiều giao thức được phần làm 4 tầng như sau:



Các tầng trong bộ giao thức TCP/IP




      1. Đặc điểm

  • Là bộ giao thức chuẩn mở và sẵn có, vì: nó không thuộc sở hữu của bất cứ một tổ chức nào; các đặc tả thì sẵn có và rộng rãi. Vì vậy bất kì ai cũng có thể xây dựng phần mềm truyền thông qua mạng máy tính dựa trên nó.

  • TCP/IP độc lập với phần cứng mạng vật lý, điều này cho phép TCP/IP có thể được dùng để kết nối nhiều loại mạng có kiến trúc vật lý khác nhau như: Ethernet, Tokenring, FDDI, X25, ATM...(Trong phạm vi đề tài ta chỉ xét tới Ethernet).

  • TCP/IP dùng địa chỉ IP để định danh các host trên mạng tạo ra một mạng ảo thống nhất khi kết nối mạng.

  • Các giao thức lớp cao được chuẩn hoá thích hợp và sẵn có với người dùng.

    1. So sánh TCP/IP và OSI

Do nhiều nguyên nhân như lịch sử, chi phí… nên bộ giao thức TCP/IP đã được sử dụng rất lâu trước khi mô hình OSI ra đời. Cũng do vậy nên mô hình OSI không được sử dung rộng rãi trong thực tế mà là mô hình học thuật dùng để so sánh với mô hình thực tế là TCP/IP. Hai cái có liên quan ít nhiều, song không phải là hoàn toàn giống nhau. Điểm khác biệt đầu tiên dễ thấy nhất là số lượng của các tầng cấp. Trong khi bộ giao thức TCP/IP có 4 (hoặc 5 tầng) thì mô hình OSI có tới 7 tầng với sự khác biệt là 2 tầng mới: tầng phiên và tầng trình diễn. Nhiều so sánh đã gộp 2 tầng này vào tầng ứng dụng trong bộ giao thức TCP/IP. Hình vẽ sau đây so sánh các tầng tương ứng lẫn nhau giữa OSI và TCP/IP:

Tương ứng các tầng giữa TCP/IP và OSI



  • Trong khi mô hình OSI nhấn mạnh độ tin cậy được cung cấp trong dịch vụ chuyển dữ liệu thì đối với TCP/IP coi độ tin cậy nằm trong vấn đề end to end.

  • Trong mô hình OSI tất cả mọi tầng đều có phát hiện và kiểm tra lỗi, tầng giao vận chỉ làm nhiệm vụ kiểm tra độ tin cậy của source – to – destination. Còn đối với bộ giao thức TCP/IP tầng giao vận làm mọi nhiệm vụ kiểm tra phát hiện và sửa lỗi.

  • Mô hình OSI được xây dựng trước khi các giao thức của nó được xây dựng, do vậy nó có tính tổng quát cao và có thể được dùng đẻ mô tả các mô hình khác. Ngược lại, bộ giao thức TCP/IP chỉ là một mô hình để nhóm và miêu tả những giao thức sẵn có trong thực tế. Vì vậy bộ giao thức TCP/IP được sử dụng rộng rãi trong thực tế trong khi mô hình OSI lại phù hợp với mục đích học tập và giảng dạy.

  1. Bộ giao thức TCP/IP – Các giao thức và khuôn dạng dữ liệu chính

    1. Cấu trúc phân tầng của TCP/IP

Như ta đã nói ở phần trên, TCP/IP là mô hình mở để kết nối mạng, Do vậy, nó cũng được thiết kế theo kiến trúc phân tầng tương tự như mô hình OSI. Bộ giao thức TCP/IP được thiết kế gồm 4 tầng được mô tả theo hình dưới:



Bộ giao thức TCP/IP

    1. Đóng gói dữ liệu trong TCP/IP

Bộ giao thức TCP/IP dùng sự đóng gói dữ liệu nhằm trừu tượng hóa các giao thức và dịch vụ, nói cách khác là các giao thức ở tầng cao hơn sử dụng các giao thức ở tầng thấp hơn nhằm đạt được mục đích của mình bằng cách đóng gói dữ liệu giống như ở ví dụ trong hình sau:


Những tầng trên đỉnh gần với người sử dụng hơn, những tầng thấp nhất gần với thiết bị truyền thông hơn. Trong mỗi tầng là một nhóm nhiều giao thức, trong đó có một giao thức để phục vụ tầng trên của nó và một giao thức sử dụng dịch vụ của tầng dưới của nó (ngoại trừ tầng đỉnh và tầng đáy). Bảng sau liệt kê một số giao thức của các tầng:

Tầng

Giao Thức

Application

DNS, TFTP, TLS/SSL, FTP, Gopher, HTTP, IMAP, IRC, NNTP, POP3, SIP, SMTP,SMPP, SNMP, SSH, Telnet, Echo, RTP, PNRP, rlogin, ENRP

Transport

TCP, UDP, DCCP, SCTP, IL, RUDP, RSVP

Internet

IP (IPv4, IPv6), ICMP, IGMP, ICMPv6

Link

ARP, RARP, OSPF (IPv4/IPv6), IS-IS, NDP

Một số giao thức trên các tầng của TCP/IP

    1. Sơ lược chức năng các tầng

      1. Tầng ứng dụng (Application Layer)

Đây là tầng cao nhất trong cấu trúc phân lớp của TCP/IP. Tầng này bao gồm tất cả các chuơng trình ứng dụng sử dụng các dịch vụ sẵn có thông qua một chồng giao thức TCP/IP. Các chương trình ứng dụng tương tác với một trong các giao thức của tầng giao vận để truyền hoặc nhận dữ liệu. Mỗi chương trình ứng dụng lựa chọn một kiểu giao thức thích hợp cho công việc của nó. Chương trình ứng dụng chuyển dữ liệu theo mẫu mà tầng giao vận yêu cầu.

      1. Tầng giao vận (Transport Layer)

Nhiệm vụ trước tiên của tầng giao vận là cung cấp sự giao tiếp thông tin giữa các chương trình ứng dụng. Mỗi sự giao tiếp được gọi là end-to-end. Tầng giao vận cũng có thể điều chỉnh lưu lượng luồng thông tin. Nó cũng cung cấp một sự vận chuyển tin cậy, đảm bảo rằng dữ liệu đến mà không bị lỗi. Để làm như vậy, phần mềm giao thức hỗ trợ để bên nhận có thể gửi lại các thông báo xác nhận về việc thu dữ liệu và bên gửi có thể truyền lại các gói tin bị mất hoặc bị lỗi. Phần mềm giao thức chia dòng dữ liệu ra thành những đơn vị dữ liệu nhỏ hơn (thường được gọi là các Packets) và chuyển mỗi packet cùng với địa chỉ đích tới tầng tiếp theo để tiếp tục quá trình truyền dẫn.

      1. Tầng Internet (Internet Layer)

Tầng mạng xử lý giao tiếp thông tin từ một máy này tới một máy khác. Nó chấp nhận một yêu cầu để gửi một gói từ từ tầng giao vận cùng với một định danh của máy đích mà gói tin sẽ được gửi tới. Ví dụ với giao thức TCP hay UDP của tầng giao vận, nó sẽ bọc gói tin trong một IP Datagram, điền đầy vào trong phần header, sử dụng giải thuật chọn đường để quyết định là giao phát gói tin trực tiếp hay là gửi nó tới một Router, và chuyển datagram tới giao diện phối ghép mạng thích hợp cho việc truyền dẫn.tầng mạng cũng xử lý các Datagram đến, kiểm tra tính hợp lệ của chúng, và sử dụng giải thuật chọn đường đẻ quyết định là datagram sẽ được xử lý cục bộ hay là sẽ được chuyển đi tiếp. Đối với các datagrams có địa chỉ đích cục bộ, thì phần mềm tầng mạng sẽ xoá phần header của các datagram đó, và chọn trong số các giao thức tầng giao vận một giao thức thích hợp để xử lý packet.

      1. Tầng liên kết (Link Layer)

Là tầng thấp nhất của bộ giao thức TCP/IP, chịu trách nhiệm về việc chấp nhận các datagram của tầng trên (ví dụ IP datagram) và việc truyền phát chúng trên một mạng xác định. Theo quan điểm hiện nay mô hình TCP/IP không còn bao gồm các đặc tả vật lý, nói cách khác tầng liên kết cũng không còn bao gồm vấn đề về phần cứng hay việc truyền tín hiệu vật lý nữa.

    1. Các giao thức chính và khuôn dạng dữ liệu tương ứng

Trong phần này ta sẽ xem xét các giao thức cũng như khuôn dạng dữ liệu chính của bộ giao thức TCP/IP. Để dễ phân biệt ta sẽ xem xét đối với từng tầng của TCP/IP theo thứ tự từ dưới lên trên.

      1. Ethernet

Là giao thức nằm trong tầng liên kết hay là một chuẩn công nghệ dành cho mạng cục bộ (LAN) được quy định trong IEEE 802.3. Nó là một giao thức nằm trong tầng liên kết của bộ giao thức TCP/IP hay tương ứng là tầng liên kết dữ liệu trong mô hình OSI. Hiện nay nó đang được sử dụng rất rộng rãi so với các giao thức khác như FDDI, Token Ring…Ethernet được dùng để gửi những khối dữ liệu giữa điểm nguồn và điểm đích được xác định dựa vào địa chỉ MAC (Media Access Control).

Đặc điểm của giao thức Ethernet

Cấu trúc của một đơn vị dữ liệu trong giao thức Ethernet (gọi là Ethernet frame) có cấu trúc như sau: (đơn vị tính theo byte).


PRE

SOF

DA

SA

Length/Type

Data Payload

FCS

7

1

6

6

2

46-1500

4

Ethernet frame

Header


    • Preamble (PRE): Phần mở đầu gồm 7 byte và không được tính vào kích thước của Ethernet. Tất cả các byte trong phần mở đầu này đều có giá trị 10101010 và nó được dùng để đồng bộ đồng hồ giữa nơi nhận và gửi frame.

    • SOF (Start frame delimiter) gồm 1 byte và không được tính vào kích thước của Ethernet. Byte này có giá trị 101010111 và được sử dụng để đánh dấu bắt đầu của một frame. Đối với những hệ thống Ethernet hiện nay hoạt động ở tốc độ 100 Mbps hoặc 1000Mbps không còn cần tới PRE và SOF.

    • DA (Destination Address) có độ dài 6 byte là địa chỉ nơi MAC của Ethernet card nơi đến. Ở chế độ hoạt động bình thường Ethernet chỉ tiếp nhấn những frame có địa chỉ nơi đến trùng với địa chỉ (duy nhất) của nó hoặc địa chỉ nơi đến thể hiện một thông điệp quảng bá. Tuy nhiên hầu hết các Ethernet card hiện nay đều có thể được đặt ở chế độ đa hỗn tạp (promiscuous mode) và khi đó nó sẽ nhận tất cả các frame xuất hiện trong mạng LAN.

    • SA (Source Addresss) có độ dài 6 byte là địa chỉ MAC của card nguồn.

    • Length/Type (Độ dài/Loại) 2 byte chỉ ra độ dài (đối với IEEE 802.3 MAC frame) và loại của Ethernet frame chỉ giao thức của tầng cao hơn (đối với DIX Ethernet.(DEC- Intel – Xerox) – phổ biến hơn). Ví dụ như với DIX Ethernet frame có giao thức tầng trên là IP thì 2 byte này sẽ có giá trị là 0800h và ARP là 0806h.

  • Data Payload: Phần thông tin dữ liệu có độ dài từ 46 tới 1500 byte.

  • Trailer (FCS - Frame Check Sequence): 32 bit sửa lỗi CRC.

Ethernet sử dụng phương thức truy nhập đường truyền CSMA/CD, do vậy những frame lỗi do xảy ra xung đột (collision) trên đường truyền là không thể tránh khỏi. Tuy nhiên, nếu như tỉ lệ những frame lỗi vượt quá một mức nào đó (ví dụ như 1% tổng số frame) có nghĩa là hệ thống mạng đã có vấn đề. Những Ethernet frame lỗi bao gồm:

  • Frame có độ lớn nhỏ hơn 64 byte. (normal collision – xảy ra khá phổ biến).

  • Frame có độ lớn lớn hơn 1518 byte.

  • Frame có độ lớn phù hợp nhưng có phần CRC bị sai lệch (late collision – nếu có nhiều frame dạng này tức là hệ thống mạng đang gặp vấn đề nghiêm trọng).

      1. ARP (address resolution protocol)

Giao thức phân giải địa chỉ ARP là phương pháp tìm địa chỉ tầng liên kết (hay địa chỉ vật lý) khi biết địa chỉ tầng Internet (IP) hoặc một vài kiểu địa chỉ tầng mạng khác. ARP được sử dung không chỉ để chuyển đổi địa chỉ đối với IP và Ethernet mà nó được cài đặt để làm việc với nhiều loại địa chỉ của các tầng các loại mạng khác nhau. Tuy nhiên, do sự phổ biến của IPv4 và Ethernet nên ARP chủ yếu được dùng để chuyển đổi từ địa chỉ IP thành địa chỉ MAC. Nó cũng được sử dụng đối với IP dựa trên các công nghệ LAN khác Ethernet như FDDI, Token Ring, IEEE 802.11 hay ATM.

Trong thực tế, khi truyền thông với máy chủ thay vì truy vấn địa chỉ vật lý của máy chủ, giao thức ARP sẽ sử dụng bộ đệm ARP (ARP cache). Bộ đệm lưu trữ các địa chỉ IP gần nhất đã được phân giải. Nếu địa chỉ MAC của địa chỉ IP đích được tìm thấy trong bộ đệm thì địa chỉ này sẽ được sử dụng để truyền thông.

Cấu trúc của một đơn vị dữ liệu giao thức ARP như sau:


Bit offset

0 – 7

8 – 15

16 – 32

0

Hardware type (HTYPE)

Protocol type (PTYPE)

32

Hardware length (HLEN)

Protocol length (PLEN)

Operation (OPER)

64

Sender hardware address (SHA)

96

Sender hardware address (SHA)

Sender protocol address (SPA)

128

Sender protocol address (SPA)

Target hardware address (THA)

160

Target hardware address (THA)

192

Target protocol address (TPA)

Cấu trúc một đơn vị dữ liệu ARP




  • Hardware type (HTYPE)  Mỗi giao thức tầng liên kết (link layer) sẽ được gán một số để phân biệt (ví dụ như Ethernet là 1)..

  • Protocol type (PTYPE) Dùng để phân biệt giao thức tầng Internet, ví dụ như với IP là 0x0800.

  • Hardware length (HLEN) Độ dài tính theo byte của địa chỉ vật lý. Đối với Ethernet giá trị này là 6.

  • Protocol length (PLEN) Độ dài tính theo byte của địa chỉ logic. Đối với IP giá trị này là 4..

  • Operation  Xác định hành động mà bên gửi gói tin đang thực hiện: 1 cho request, 2 cho reply, 3 cho RARP request và 4 cho RARP reply.

  • Sender hardware address (SHA) Địa chỉ vật lý của trạm gửi.

  • Sender protocol address (SPA) Địa chỉ logic của trạm gửi (ví dụ như địa chỉ IP).

  • Target hardware address (THA) Địa chỉ vật lý của trạm đích. Trường này được để trống đối với gói tin request.

  • Target protocol address (TPA)  Địa chỉ logic của trạm đích.

      1. RARP (reserve address resolution protocol)

Là giao thức ngược lại so với ARP, tìm địa chỉ logic khi biết địa chỉ vật lý. Cấu trúc của một đơn vị dữ liệu của giao thức RARP hoàn toàn tương tự như ARP, ngoại trừ trường Operation. Đối với gói dữ liệu ARP thì Operation có giá trị 1 nếu là request, 2 nếu reply. Đối với gói dữ liệu RARP thì Operation có giá trị 3 nếu là request và 4 nếu là reply.

      1. IP (internet protocol)

Giao thức liên mạng IP hạt nhân của bộ giao thức TCP/IP. Trong phạm vi đề tài chúng ta chỉ xét tới IP phiên bản 4 (IPv4). IP là một giao thức hướng dữ liệu được sử dụng trong mạng chuyển mạch gói (ví dụ như Ethernet). IP là một giao thức hoạt động theo phương thức không liên kết (connectionless) và không đảm bảo truyền (không có sự trao đổi thông tin điều khiển). Vai trò của IP tương tự như vài trò của giao thức tầng mạng (network layer) trong mô hình OSI với các chức năng như sau:

  • Xác định lược đồ địa chỉ Internet.

  • Di chuyển dữ liệu giữa tầng giao vận và tầng liên kết.

  • Dẫn đường cho các đơn vị dữ liệu tới các trạm ở xa.

  • Thực hiện việc cắt và hợp các đơn vị dữ liệu.

Giao thức IP sẽ bổ sung phần header vào trước segment được gửi từ tầng giao vận xuống và đơn vị dữ liệu này trong bộ giao thức TCP/IP được gọi là IP packet như hình sau:


Đơn vị dữ liệu của giao thức IP có cấu trúc như sau:

Bit offset

0–3

4–7

8–15

16–18

19–31

0

Version

Header length

Differentiated Services

Total Length

32

Identification

Flags

Fragment Offset

64

Time to Live

Protocol

Header Checksum

96

Source Address

128

Destination Address

160

Options + Padding

160 /192+

Data (max 65535 bytes)

Cấu trúc đơn vị dữ liệu IP


Trong đó phần header bao gồm các thành phần:

  • Version: chỉ ra phiên bản hiện hành của IP được cài đặt (có giá trị là 4 đối với IPv4).

  • Internet Header Length (IHL)  Chỉ độ dài phần đầu của IP packet, tính theo đơn vị từ (word = 32 bit). Độ dài tối thiểu là 5 từ (20 byte).

Differentiated Services (DS): Trước đây còn gọi là Type of Services đặc tả các tham số dịch vụ, có dạng cụ thể như sau:


bit 0 – 2

3

5

5

6

7

Precedence

D

T

R

C

Reserved

Với ý nghĩa các bit cụ thể:



  • Precedebce (3 bit): quyền ưu tiên cụ thể là 111 - Network Control, 110 - Internetwork Control, 101 - CRITIC/ECP, 100 - Flash Override, 011 - Flash, 010 - Immediate, 001 - Priority, 000 – Routine.

  • D (Delay) (1 bit): chỉ độ trễ yêu cầu D = 0 nếu độ trễ bình thường, 1 nếu độ trễ thấp.

  • T (Throughput) (1 bit): chỉ thông lượng yêu cầu T = 0 thông lượng bình thường, 1 nếu thông lượng cao.

  • R (Reliability) (1bit) chỉ độ tin cậy yêu cầu R = 0 độ tin cậy bình thường, 1 nếu độ tin cậy cao.

  • C (Cost) (1bit) chỉ hao phí C = 0 normal cost, 1 nếu minimize cost.

  • Reserved (1bit) để dành.

  • Total Length  trường 16 bit chỉ độ dài toàn bộ datagram bao gồm cả phần header và phần data tính theo byte và có giá trị lớn nhất là 65535 và giá trị nhỏ nhất là 20 byte.

  • Identification (16 bit) định danh duy nhất cho 1 datagram khi nó vẫn còn trên liên mạng.

  • Flags (3 bit) điều khiển sự phân mảnh. Theo thứ tự từ bit cao xuống bit thấp như sau:

    • Reserved: có giá trị 0.

    • DF: 0 (May Fragment); 1 (Don’t Fragment).

    • MF: 0 (Last Fragment); 1 (More Fragment).

  • Fragment Offset chỉ vị trí của đoạn (fragment) trong datagram tính theo đơn vị 64 bit, có nghĩa mỗi đoạn (trừ đoạn cuối cùng) phải chứa một vùng dữ liệu có độ dài là bội số của 64 bit.

  • Time To Live (TTL)  (8 bit): quy định thời gian tồn tại (tính bằng giây) của datagram trong liên mạng để tránh tình trạng một datagram bị lặp vô hạn trên liên mạng. Thời gian này được cho bởi trạm gửi và được giảm đi (thường quy ước là 1 đơn vị) khi datagram đi qua mỗi router của liên mạng.

  • Protocol  (8 bit): chỉ ra giao thức tầng trên kế tiếp sẽ nhận vùng dữ liệu ở trạm đích (hiện tại thường là TCP hoặc UDP được cài đặt trên IP).

  • Header Checksum  (16 bit): mã kiểm soát lỗi 16 bit theo phương pháp CRS, chỉ dành cho phần header.

  • Source address (32 bit): địa chỉ trạm nguồn.

  • Destination address (16 bit): địa chỉ trạm đích.

  • Options (độ dài thay đổi): khai báo các lựa chọn do người dùng yêu cầu (tùy theo từng chương trình).

  • Padding (độ dài thay đổi): vùng đệm được dùng để đảm bảo cho phần header luôn kết thúc ở một mốc 32 bits.

  • Data (độ dài thay đổi): vùng dữ liệu có độ dài là bội số của 8 bit và tối đa là 65535 byte.

      1. ICMP (internet control message protocol)

Giao thức ICMP cung cấp cơ chế thông báo lỗi và các tình huống không mong muốn cũng như điều khiển các thông báo trong bộ giao thức TCP/IP. Giao thức này được tạo ra để thông báo các lỗi dẫn đường cho trạm nguồn. ICMP phụ thuộc vào IP để có thể hoạt động và là một phần không thể thiếu của bộ giao thức TCP/IP, tuy nhiên nó không phải giao thức dùng để truyền tải dữ liệu nên thường được coi nằm trong tầng Internet (Internet layer) mà không phải là tầng giao vận (transport layer).

Chức năng của ICMP như sau:



  • Cung cấp thông báo phản hồi và trả lời để kiểm tra độ tin cậy của kết nối giữ hai trạm. Điều này được thiết lập bởi câu lệnh PING (Packet internet gropher).

  • Địch hướng lại lưu lượng để cung cấp việc dẫn đường hiệu quả hơn khi một bộ dẫn đường quá tải dõ lưu lượng qua nó quá lớn.

  • Gửi thông báo về thời gian quá khi datagram của trạm nguồn đã vượt quá TTL và bị loại bỏ.

  • Gửi quảng cáo dẫn đường để xác định địa chỉ của các bộ dẫn đường trên đoạn mạng.

  • Cung cấp các thông báo quá hạn thời gian.

Xác định subnet mask nào được sử dụng trên đoạn mạng.

Dữ liệu của gói ICMP sẽ được đóng gói bởi giao thức IP và Ethernet như trong hình vẽ sau:




Đơn vị dữ liệu của ICMP bao gồm 2 phần: Header và Data. Phần Data trong Window có độ lớn là 32 và theo ngay sau phần Header. Header được bắt đầu sau bit thứ 160 của gói tin IP (trừ khi phần IP Option được sử dụng) có cấu trúc như sau:


bit

160 – 167

168 – 175

176 – 183

184 – 191

160

Type

Code

Checksum

192

ID

Sequence

Trong đó:

Type (8 bit): Loại gói tin ICMP.

Code (8 bit): Chi tiết về các đặc điểm của gói tin ICMP.



  • Checksum( 16 bit) Mã sửa lỗi CRC.

  • ID & Sequence (32 bit): Có giá trị trong trường hợp ICMP Echo Request và Echo Reply.

      1. TCP (Transmission Control Protocol)

Giao thức điều khiển truyền TCP là một giao thức hoạt động theo phương thức có liên kết (connection – oriented). Trong bộ giao thức TCP/IP, nó là giao thức trung gian giữa IP và một ứng dụng phía trên, đảm bảo dữ liệu được trao đổi một cách tin cậy và đúng thứ tự. Các ứng dụng sẽ gửi các dòng gồm các byte 8 bit tới TCP để gửi qua mạng. TCP sẽ phân chia các dòng này thành các đoạn (segment) có kích thước thích hợp (thường dựa theo kích thước của đơn vị truyền dẫn tối đa MTU của tầng liên kết của mạng mà máy tính đang nằm trong đó. Sau đó TCP chuyển các gói tin thu được tới IP để thực hiện chuyển nó qua liên mạng tới modul TCP tại máy tính đích. Trong quá trình này, nó sẽ có cơ chế bắt tay, điều khiển truyền, đánh số thứ tự và sửa lỗi để việc truyền dẫn diễn ra đúng đắn và chính xác.

Đơn vị dữ liệu của TCP được gọi là segment (đoạn dữ liệu) bao gồm 2 phần: Header và Data, được miêu tả dưới hình sau:




Bit

0 – 3

4 – 9

10 – 15

16 – 31

0

Source Port

Destination Port

32

Sequence Number

64

Acknowledgement Number

96

Data Offset

Reserved

Flags

Window

128

Checksum

Urgent Pointer

160

Options + Padding

160/192+

Data

Cấu trúc đơn vị dữ liệu TCP

Trong đó:


  • Source port (16 bit): Số hiệu của cổng của trạm nguồn

  • Destination port (16 bit): Số hiệu của cổng của trạm đích.

  • Sequence number (32 bit): Trường này có 2 nhiệm vụ. Nếu cờ SYN bật thì nó là số hiệu tuần tự khởi đầu (ISN) và byte dữ liệu đầu tiên là ISN + 1. Nếu không có cờ SYN thì đây là số hiệu byte đầu tiên của segment.

  • Acknowledgement number (32 bit): Số hiệu của segment tiếp theo mà trạm nguồn đang chờ để nhận. Ngầm ý báo nhận tốt (các) segment mà trạm đích đã gửi cho trạm nguồn.

  • Data offset (4 bit): Qui định độ dài của phần header (tính theo đơn vị từ 32 bit). Phần header có độ dài tối thiểu là 5 từ (160 bit) và tối đa là 15 từ (480 bit).

  • Reserved (6 bit): Dành cho tương lai và có giá trị là 0.

  • Flags (hay Control bits): Bao gồm 6 cờ từ trái sang phải như sau:

    • URG: Cờ cho trường Urgent pointer

    • ACK: Cờ cho trường Acknowledgement

    • PSH: Hàm Push

RST: Thiết lập lại đường truyền

SYN: Đồng bộ lại số hiệu tuần tự (sequene number).



    • FIN: Không còn dữ liệu từ trạm nguồn.

  • Window (16 bit): Số byte trạm nguồn có thể nhận bắt đầu từ giá trị của trường báo nhận (ACK).

  • Checksum: 16 bit kiểm tra cho cả phần header và dữ liệu.

  • Urgent pointer (16 bit): Trỏ tới số hiệu tuần tự của byte đi theo sau dữ liệu khẩn, cho phép bên nhận biết được độ dài của vùng dữ liệu khẩn. Vùng này chỉ có hiệu lực khi cờ URG được thiết lập.

  • Options (độ dài thay đổi): Đây là trường tùy chọn.

  • Padding (độ dài thay đổi): Phần chèn thêm vào header để bảo đảm phần header luôn kết thúc ở một mốc 32 bit. Phần thêm này gồm toàn số 0.

  • TCP data (độ dài thay đổi): Chưa dữ liệu của tầng trên, có độ dài ngầm định là 536 byte. Giá trị này có thể điều chỉnh bằng cách khai báo trong vùng options.

      1. UDP (User Datagram Protocol)

Đây là một giao thức “không liên kết” được sử dụng thay thế trên IP theo yêu cầu của các ứng dụng. Khác với TCP, UDP không có các chức năng thiết lập và giải phóng liên kết. Nó cũng không cung cấp các cơ chế báo nhận, không sắp xếp tuần tự các đơn vị dữ liệu đến và có thể dẫn tới tình trạng dữ liệu mất hoặc trùng mà không hề có thông báo lỗi cho người gửi. Tóm lại nó cung cấp các dịch vụ giao vận không tin cậy như trong TCP. Do ít chức năng phức tạp nên UDP có xu thế hoạt động nhanh hơn so với TCP. Nó thường được dùng cho các ứng dụng không đòi hỏi độ tin cậy cao trong giao vận.

Cấu trúc của một đơn vị dữ liệu UDP như sau:



Bit

0 - 15

16 – 31

0

Source Port

Destination Port

32

Length

Checksum

64

Data

Cấu trúc đơn vị dữ liệu UDP

Trong đó:



  • Source port (16 bit): Trường này xác định cổng của trạm gửi và có ý nghĩa nếu muốn nhận thông tin phản hồi từ người nhận. Nếu không dùng đến thì đặt nó bằng 0.

  • Destination port (16 bit): Trường xác định cổng của trạm nhận thông tin, và trường này là cần thiết.

  • Length (16 bit): Xác định chiều dài của toàn bộ datagram: phần header và dữ liệu. Chiều dài tối thiểu là 8 byte khi gói tin không có dữ liệu, chỉ có header.

  • Checksum (16 bit): Trường checksum 16 bit dùng cho việc kiểm tra lỗi của phần header và dữ liệu.

      1. HTTP (Hypertext Transfer Protocol)

Là một giao thức tầng ứng dụng dựa trên giao thức TCP của tầng giao vận trên cổng số 80 hỗ trợ Web. Trong giao thức này mỗi đối tượng dữ liệu (trang web, ảnh, audio...) được truyền trong những phiên (HTTP session) riêng biệt. Phần dữ liệu được đưa xuống tầng giao vận và được chuyển thành các TCP packet để gửi cho trạm nhận.

Để bắt đầu một phiên, client thiết lập kết nối tới server bằng cách gửi một TCP packet với cờ SYN được bật tới cổng 80. Server gửi trả lại packet đó với cờ ACK được bật. Cuối cùng, client gửi packet với cờ ACK và tiếp tục là request đối tượng mình cần. Ví dụ như GET /index.html HTTP/1.1

Server sẽ phản hồi cho client với mã trạng thái, ví dụ như “200 OK”, “403 Forbbiden”, “404 Not Found”... Sau đó server sẽ gửi packet đóng kết nối.


      1. DNS (Domain Name System)

Là một giao thức cho phép ánh xạ giữa tên miền và địa chỉ IP và làm việc trên giao thức UDP của tầng giao vận (hầu hết trên cổng 53). Cấu trúc dữ liệu phần header của DNS message như sau:


bit 0 – 15

16

17 – 20

21

22

23

24

25 – 27

29 – 31

ID

Q

Query

A

T

R

V

B

Rcode

Question count

Answer count

Authority count

Additional count

Cấu trúc header của gói tin DNS


Trong đó:

  • ID: Là một trường 16 bits, chứa mã nhận dạng, nó được tạo ra bởi một chương trình để thay cho truy vấn. Gói tin hồi đáp sẽ dựa vào mã nhận dạng này để hồi đáp lại. Chính vì vậy mà truy vấn và hồi đáp có thể phù hợp với nhau.

  • QR: Là một trường 1 bit. Bít này sẽ được thiết lập là 0 nếu là gói tin truy vấn, được thiết lập là một nếu là gói tin hồi đáp.

  • Opcode: Là một trường 4 bits, được thiết lập là 0 cho cờ hiệu truy vấn, được thiết lập là 1 cho truy vấn ngược, và được thiết lập là 2 cho tình trạng truy vấn.

  • AA: Là trường 1 bit, nếu gói tin hồi đáp được thiết lập là 1, sau đó nó sẽ đi đến một server có thẩm quyền giải quyết truy vấn.

  • TC: Là trường 1 bit, trường này sẽ cho biết là gói tin có bị cắt khúc ra do kích thước gói tin vượt quá băng thông cho phép hay không.

  • RD: Là trường 1 bit, trường này sẽ cho biết là truy vấn muốn server tiếp tục truy vấn một cách đệ qui.

  • RA: Trường 1 bit này sẽ cho biết truy vấn đệ qui có được thực thi trên server không .

  • Z: Là trường 1 bit. Đây là một trường dự trữ, và được thiết lập là 0.

  • Rcode: Là trường 4 bits, gói tin hồi đáp sẽ có thể nhận các giá trị sau :

    • 0: Cho biết là không có lỗi trong quá trình truy vấn.

1: Cho biết định dạng gói tin bị lỗi, server không hiểu được truy vấn.

2: Server bị trục trặc, không thực hiện hồi đáp được.



3: Tên bị lỗi. Chỉ có server có đủ thẩm quyền mới có thể thiết lập giá trị náy.

    • 4: Không thi hành. Server không thể thực hiện chức năng này .

    • 5: Server từ chối thực thi truy vấn.

  • QDcount: Số lần truy vấn của gói tin trong một vấn đề.

  • ANcount: Số lượng tài nguyên tham gia trong phần trả lời.

  • NScount: Chỉ ra số lượng tài nguyên được ghi lại trong các phẩn có thẩm quyền của gói tin.

  • ARcount: Chỉ ra số lượng tài nguyên ghi lại trong phần thêm vào của gói tin.

CHƯƠNG II. KỸ THUẬT CHẶN BẮT

  1. Tổng Quan Về Chặn Bắt Gói Tin (Sniffer)

    1. Các khái niệm liên quan

  • Packet là một đơn vị dữ liệu được định dạng để lưu chuyển trên mạng.

  • Network Traffic là lưu lượng thông tin vào/ra hệ thống mạng. Để có thể đo đạc, kiểm soát Network Traffic ta cần phải chặn bắt các gói tin (Packet capture).

  • Packet capture là hành động chặn bắt các packet dữ liệu được lưu chuyển trên mạng. Packet capture gồm có:

    • Deep Packet Capture (DPC): là hành động chặn bắt toàn bộ các gói tin trên mạng (bao gồm cả phần header và payload). Các gói tin chặn bắt được sẽ được lưu trữ lại trong bộ nhớ tạm thời hoặc lâu dài.

    • Deep Packet Inspection (DPI): là quá trình kiểm tra, đánh giá để tìm ra nguyên nhân của những vấn đề của mạng, xác định nguy cơ an toàn bảo mật, chắc chắn mạng hoạt động chính xác về kỹ thuật và luật pháp.

    • DPC và DPI được kết hợp với nhau nhằm quản lý, đánh giá, phân tích sự luân chuyển các gói tin trên mạng đồng thời lưu giữ lại những thông tin đó cho các mục đích khác sau này.

  • Trong thực tế packet capture có thể ghi lại được header mà không cần lưu giữ toàn bộ phần nội dung payload. Nhờ vậy, ta có thể giảm được yêu cầu bộ nhớ dùng để lưu trữ, tránh các vấn đề pháp luật trong khi vẫn có đầy đủ những thông tin cần thiết nhất.

  • Packet Analyzer (Sniffer) là phần mềm hoặc phần cứng máy tính được gắn vào trong 1 mạng máy tính để có thể theo dõi thông tin lưu chuyển (network traffic) trên 1 mạng hay một phần của mạng. Sniffer sẽ có nhiệm vụ chặn bắt các gói tin (packet), sau đó giải mã, phân tích nội dung của nó nhằm thực hiện các mục đích khác nhau.

    1. Ứng dụng của sniffer

      1. Khả năng

  • Đối với mạng LAN có dây thì phụ thuộc vào cấu trúc của mạng (sử dụng hub hay switch) ta có thể chặn bắt toàn bộ hay một phần các thông tin trên mạng từ một nút duy nhất nằm trong mạng. Đối với hub ta có thể chặn bắt tất cả các gói tin truyền tải qua mạng, nhưng đối với switch cần phải có một số phương thức đặc biệt như ARP snoofing.

  • Đối với mạng LAN không dây thì các gói tin được chặn bắt trên các kênh riêng biệt.

  • Để một máy có thể chặn bắt thông tin trong mạng của nó, network adapter phải được đặt ở promiscuous mode.

      1. Mục đích

Thường có 2 dạng chính: dùng để kiểm tra bảo trì mạng và dạng kia dùng để xâm nhập mạng. Chúng được sử dụng cho các mục đích:

  • Phân tích hiệu năng làm việc hoặc sự cố mạng.

  • Nhận biết sự xâm nhập mạng, rò rỉ thông tin, ... lấy về thông tin liên quan tới quá trình xâm nhập.

  • Quản lý sử dụng mạng.

  • Tập hợp thông tin báo cáo về trạng thái mạng.

  • Sửa lỗi, bảo trì các hình thái, giao thức mạng.

  • Lọc lấy thông tin cần thiết được lưu chuyển trên mạng, đưa về dạng phù hợp để con người có thể đọc.

  • Chặn bắt các thông tin nhạy cảm như mật khẩu, username của người dùng khác trên mạng nhằm xâm nhập hệ thống của họ.

    1. Các chương trình sniffer hiện có

Hiện nay có rất nhiều chương trình miễn phí cũng như thương mại thực hiện việc chặn bắt và phân tích gói tin. Một số chương trình trong đó như:

  • Tcpdump (http://www.tcpdump.org/) đối với Unix và Windump (http://www.winpcap.org/windump/default.htm) đối với Window.

  • Wireshark (http://www.wireshark.org/).

  • Etherpeek (http://www.aggroup.com/).

  • Triticom LANdecoder32

(http://www.triticom.com/TRITICOM/LANdecoder32/).

  • Snort (http://en.wikipedia.org/wiki/Snort_(software)).

  • Kismet (http://en.wikipedia.org/wiki/Kismet_(software)) dành cho 802.11 wireless LANs.

  • Cain & Anbel (http://www.oxid.it/)

  1. Cách Thức Hoạt Động

    1. Theo dõi Network Traffic

Trong phạm vi của báo cáo thực tập tốt nghiệp chỉ xét tới môi trường mạng có dây trong WindowXP, hay chính xác hơn là trong phạm vi chuẩn Ethernet.

Ethernet được xây dựng dựa trên khái niệm chia sẻ. Tất cả các máy trong một mạng nội bộ đều được chia sẻ chung một đường dây. Điều đó chỉ ra rằng tất cả các máy trong mạng đều có thể “nhìn thấy” traffic trong đường dây đó.

Do đó, phần cứng Ethernet sẽ có một bộ lọc (“filter”) bỏ qua tất cả nhưng traffic không phải dành cho nó (bằng cách bỏ qua tất cả các frame có địa chỉ MAC không phù hợp). Để khắc phục, sniffer phải có cơ chế tắt “filter” ở trên, đưa phần cứng Ethernet vào chế độ hỗn tạp (“promiscuous mode)”


    1. Phân tích Network Traffic

Khi dữ liệu được gửi trên đường dây, nó sẽ được chia nhỏ, đóng gói thành nhiều packet và được gửi đi một cách riêng biệt. Sniffer là chương trình sẽ chặn bắt các packet này.

Sau khi đã tiến hành chặn bắt thành công các gói tin, chúng ta sẽ có được các packet mang thông tin. Tuy nhiên, để lấy được thông tin cần thiết phục vụ cho các mục đích khác nhau, chúng ta phải thực hiện việc phân tích các gói tin đó (Packet Analysis).

Các giao thức có thể sniffing như: Ethernet, IPv4, IPv6, ARP/RARP, TCP, UDP, hoặc ICMPv4, telnet, rlogin, http, SMNP, NNTP, POP, FTP, IMAP...

Ví dụ về phân tích một gói tin:

Dưới đây là 512 byte đầu tiên dữ liệu của một gói tin Ethernet dưới dạng Hex khi ta sử dụng trình duyệt để duyệt trang web

http://web.archive.org/web/20050221103207/http://www.robertgraham.com/pubs/sniffing-faq.html

000 00 00 BA 5E BA 11 00 A0 C9 B0 5E BD 08 00 45 00 ...^......^...E.

010 05 DC 1D E4 40 00 7F 06 C2 6D 0A 00 00 02 0A 00 ....@....m......

020 01 C9 00 50 07 75 05 D0 00 C0 04 AE 7D F5 50 10 ...P.u......}.P.

030 70 79 8F 27 00 00 48 54 54 50 2F 31 2E 31 20 32 py.'..HTTP/1.1.2

040 30 30 20 4F 4B 0D 0A 56 69 61 3A 20 31 2E 30 20 00.OK..Via:.1.0.

050 53 54 52 49 44 45 52 0D 0A 50 72 6F 78 79 2D 43 STRIDER..Proxy-C

060 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D onnection:.Keep-

070 41 6C 69 76 65 0D 0A 43 6F 6E 74 65 6E 74 2D 4C Alive..Content-L

080 65 6E 67 74 68 3A 20 32 39 36 37 34 0D 0A 43 6F ength:.29674..Co

090 6E 74 65 6E 74 2D 54 79 70 65 3A 20 74 65 78 74 ntent-Type:.text

0A0 2F 68 74 6D 6C 0D 0A 53 65 72 76 65 72 3A 20 4D /html..Server:.M

0B0 69 63 72 6F 73 6F 66 74 2D 49 49 53 2F 34 2E 30 icrosoft-IIS/4.0

0C0 0D 0A 44 61 74 65 3A 20 53 75 6E 2C 20 32 35 20 ..Date:.Sun,.25.

0D0 4A 75 6C 20 31 39 39 39 20 32 31 3A 34 35 3A 35 Jul.1999.21:45:5

0E0 31 20 47 4D 54 0D 0A 41 63 63 65 70 74 2D 52 61 1.GMT..Accept-Ra

0F0 6E 67 65 73 3A 20 62 79 74 65 73 0D 0A 4C 61 73 nges:.bytes..Las

100 74 2D 4D 6F 64 69 66 69 65 64 3A 20 4D 6F 6E 2C t-Modified:.Mon,

110 20 31 39 20 4A 75 6C 20 31 39 39 39 20 30 37 3A .19.Jul.1999.07:

120 33 39 3A 32 36 20 47 4D 54 0D 0A 45 54 61 67 3A 39:26.GMT..ETag:

130 20 22 30 38 62 37 38 64 33 62 39 64 31 62 65 31 ."08b78d3b9d1be1

140 3A 61 34 61 22 0D 0A 0D 0A 3C 74 69 74 6C 65 3E :a4a"....</p> <p>150 53 6E 69 66 66 69 6E 67 20 28 6E 65 74 77 6F 72 Sniffing.(networ </p> <p>160 6B 20 77 69 72 65 74 61 70 2C 20 73 6E 69 66 66 k.wiretap,.sniff</p> <p>170 65 72 29 20 46 41 51 3C 2F 74 69 74 6C 65 3E 0D er).FAQ.

180 0A 0D 0A 3C 68 31 3E 53 6E 69 66 66 69 6E 67 20 ...



tải về 2.04 Mb.

Chia sẻ với bạn bè của bạn:
  1   2   3   4




Cơ sở dữ liệu được bảo vệ bởi bản quyền ©tieuluan.info 2022
được sử dụng cho việc quản lý

    Quê hương