ĐỒ Án tốt nghiệP


a. Nguyên lý chuyển giao mềm



tải về 0.9 Mb.
trang6/11
Chuyển đổi dữ liệu22.12.2018
Kích0.9 Mb.
1   2   3   4   5   6   7   8   9   10   11

a. Nguyên lý chuyển giao mềm.

Chuyển giao mềm khác với quá trình chuyển giao cứng truyền thống. Đối với chuyển giao cứng, một quyết định xác định là có thực hiện chuyển giao hay không và máy di động chỉ giao tiếp với một BS tại một thời điểm. Đối với chuyển giao mềm, một quyết định có điều kiện được tạo ra là có thực hiện chuyên giao hay không. Tuỳ thuộc vào sự thay đổi cường độ tín hiệu kênh hoa tiêu từ hai hay nhiều trạm gốc có liên quan, một quyết định cứng cuối cùng sẽ được tạo ra để giao tiếp với duy nhất 1 BS. Điều này thường diễn ra sau khi tín hiệu đến từ một BS chắc chắn sẽ mạnh hơn các tín hiệu đến từ BS khác. Trong thời kỳ chuyển tiếp của chuyển giao mềm, MS giao tiếp đồng thời với các BS trong tập hợp tích cực (Tập hợp tích cực là danh sách các cell hiện đang có kết nối với MS).

Hình 3-15 chỉ ra sự khác nhau cơ bản của chuyển giao cứng và chuyển giao mềm.



Hình 3- Sự so sánh giữa chuyển giao cứng và chuyển giao mềm.

Giả sử rằng có một đầu cuối di động trong một chiếc ô tô đang chuyển động từ cell này sang cell khác, BS1 là trạm gốc phục vụ đầu tiên của MS. Trong khi di chuyển, MS sẽ liên tục đo cường độ của tín hiệu hoa tiêu nhận được từ các BS gần nó. Với chuyển giao cứng được chỉ ra trong hình 3-15(a), việc khởi xướng chuyển giao được thực hiện như sau:



If (pilot_E0/I0)2 – (pilot_Ec/I0)1> D and BS­1 is serving BS

Handover to BS2;

Else

Do not handover;

End.

Trong đó: (pilot_Ec/I0)1(pilot_Ec/I0)2 là Ec/I0 của kênh hoa tiêu nhận từ BS1 và BS2, D là hệ số dự trữ trễ.

Lý do đưa ra độ dự trữ trễ trong thuật toán chuyển giao cứng là để tránh “hiệu ứng ping-pong”, hiệu ứng này xảy ra khi một máy di động di chuyển qua lại biên giới một cell, chuyển giao cứng sẽ xuất hiện. Ngoài sự di động của MS, ảnh hưởng phadinh của các kênh vô tuyến có thể ảnh hưởng nghiêm trọng bởi hiệu ứng “ping-pong”. Bằngviệc đưa ra độ dự trữ trễ, hiệu ứng “ping-pong” có thể được giảm nhẹ bởi vì máy di động sẽ không thực hiện chuyển giao ngay tức thì đến các BS tốt hơn. Độ dữ trữ càng lớn, hiệu ứng “ping-pong” càng ít ảnh hưởng. Tuy nhiên khi độ dữ trữ lớn thì độ trễ càng nhiều. Hơn thế nữa, máy di động còn gây ra nhiễu bổ sung tới các cell lân cận do liên kết có chất lượng kém khi bị trễ. Vì thế, với chuyển giao cứng, giá trị của độ dữ trữ trễ khá là quan trọng. Khi chuyển giao xuất hiện, liên kết lưu lượng đầu tiên với BS1 sẽ bị ngắt trước khi thiết lập liên kết mới với BS2­ ­, cho nên chuyển giao cứng là quá trình “cắt trước khi thực hiện”.

Trường hợp chuyển giao mềm được chỉ ra trong hình 3-15(b), trước khi (pilot_ Ec/I0)2 vượt quá (pilot_ Ec/I0)1 ­, miễn là điều kiện khới xướng chuyển giao mềm được đáp ứng, MS vẫn chuyển sang trạng thái chuyển giao mềm và một liên kết mới được thiết lập. Trước khi BS1 bị cắt (điều kiện ngắt chuyển giao được đáp ứng), thì MS sẽ giao tiếp đồng thời với cả BS1 và BS2. Vì thế, khác với chuyển giao cứng, chuyển giao mềm là quá trình “thực hiện trước khi cắt”. Một số các thuật toán được đề nghị để hỗ trợ chuyển giao mềm và các điều kiện của nó được sử dụng trong các thuật toán khác nhau.

Quá trình chuyển giao mềm khác nhau trên các hướng truyền dẫn khác nhau. Hình 3-16 minh hoạ điều này. Trên đường lên, MS phát tín hiệu vào không trung nhờ anten đa hướng của nó. Hai BS trong tập hợp tích cực có thể đồng thời nhận tín hiệu nhờ hệ số sử dụng lại tần số các hệ thống CDMA. Sau đó, các tín hiệu được chuyển đến bộ điều khiển mạng vô tuyến RNC cho sự kết hợp có chọn lựa. Khung tốt hơn được chọn và những khung khác thì bị loại bỏ. Vì thế trên đường lên không cần có kênh mở rộng hỗ trợ chuyển giao mềm.

Trên đường xuống, các tín hiệu tương tự cũng được phát ra nhờ các BS và MS có thể kết hợp các tín hiệu từ các BS khác nhau khi nó phát hiện thấy các tín hiệu đó là các thành phần đa đường bổ sung. Thường thì sử dụng chiến lược kết hợp có tỉ số lớn nhất, việc này sẽ tăng thêm lợi ích được gọi là phân tập vĩ mô.Tuy nhiên, để hỗ trợ chuyển giao mềm trên đường xuống, cần thiết ít nhất một kênh đường xuống mở rộng (đối với cả 2 loại chuyển giao mềm). Kênh đường xuống mở rộng tác động tới người sử dụng khác như là nhiễu bố sung trên giao diện vô tuyến. Vì thế để hỗ trợ chuyển giao mềm trên đường xuống cần nhiều tài nguyên hơn. Kết quả là, trên đường xuống, hiệu suất của chuyển giao mềm phụ thuộc sự điều chỉnh giữa hệ số tăng ích phân tập vĩ mô và sự tiêu tốn tài nguyên tăng thêm.



Hình 3- Nguyên lý của chuyển giao mềm

b. Các thuật toán của chuyển giao mềm

Hiệu suất của chuyển giao mềm thường liên quan đến thuật toán. Hình 3-17 đưa ra thuật toán chuyển giao mềm của IS-95A (còn gọi là thuật toán cdmaOne đơn giản).





Hình 3- Thuật toán chuyển giao mềm IS-95A

  1. Ec/I0 pilot vượt quá T­_ADD, MS gửi thông điệp đo cường độ pilot (PSMM) và truyền tín hiệu pilot đến tập hợp ứng cử.

  2. BS gửi một thông điệp điểu khiển chuyển giao (HDM).

  3. MS chuyển tín hiệu pilot đến tập hợp tích cực và gửi thông điệp hoàn thành chuyển giao (HCM- Handover Completion Message).

  4. Ec/I0 pilot xuống dưới mức T_DROP, MS bắt đầu bộ định thời ngắt chuyển giao.

  5. Bộ định thời ngắt chuyển giao kết thúc hoạt động. MS gửi một PSMM.

  6. BS gửi một HDM.

  7. MS gửi một tín hiệu pilot từ tập hợp tích cực đến tập hợp lân cận và gửi HCM.

Tập hợp tích cực là một danh sách các cell hiện đang có kết nối với MS; tập hợp ứng cử là danh sách các cell hiện không được sử dụng trong kết nối chuyển giao mềm, nhưng giá trị E­/I0 pilot của chúng đủ để bổ sung vào tập hợp tích cực; Tập hợp lân cận (tập hợp giám sát) là danh sách các cell mà MS liên tục kiểm đo, nhưng giá trị E­/I0 pilot của chúng không đủ để bổ sung vào tập hợp tích cực.

Trong IS-95A, ngưỡng chuyển giao là một giá trị cố định của E­/I0 pilot nhận được. Nó có thể dễ dàng thực hiện, nhưng khó khăn trong việc xử lý sự thay đổi tải động. Dựa vào thuật toán của IS-95A, một vài thuật toán cdmaOne có hiệu chỉnh được đề xuất cho IS-95B và cdma2000 với sự biến đổi động chứ không phải ngưỡng cố định.

Trong hệ thống WCDMA, sử dụng thuật toán phức tạp hơn nhiều, được minh hoạ trong hình 3-18.



Hình 3- Thuật toán chuyển giao mềm trong WCDMA

Trong đó:



Reporting_range là ngưỡng cho chuyển giao mềm.

Hysteresis_event1A là độ trễ bổ sung

Hysteresis_event1B là độ trễ loại bỏ

Hysteresis_event1C là độ trễ thay thế

Reporting_range Hysteresis_event1A được gọi là Window_add

Reporting_range + Hysteresis_event1B được gọi là Window_drop

DT : là khoảng thời gian khởi xướng.

pilot_Ec/I0 :chất lượng được lọc và được đo Ec/I0 của CPICH;

Best_pilot_Ec/I0 là cell được đo và có cường độ mạnh nhất trong tập hợp tích cực;

Best_candidate_pilot_Ec/I0 là cell được đo có cường độ mạnh nhất trong tập hợp giám sát.

Worst_candidate_pilot_Ec/I0 là cell được đo có cường độ yếu nhất trong tập hợp tích cực.

Tập hợp tích cực “Active Set” : Là tập hợp các cell có kết nối chuyển giao mềm với UE.

Tâp hợp lân cận/ tập hợp giám sát (Neighbour set/Monitored set): Là danh sách các cell mà UE liên tiếp đo, nhưng pilot_Ec/I0 không đủ mạnh để bổ sung vào tập hợp tích cực.

Thuật toán chuyển giao mềm có thể được mô tả tóm tắt như sau:



  • Nếu pilot_Ec/I0 > Best_pilot_Ec/I0 - (Reporting_range + Hysteresis_event1A) xét trong một khoảng thời gian DT và tập hợp tích cực chưa đầy, thì cell được bổ sung vào tập hợp tích cực. Hoạt động này được gọi là Sự kiện 1A hay Bổ sung liên kết vô tuyến.

  • Nếu pilot_Ec/I0 < Best_pilot_Ec/I0 - (Reporting_range - Hysteresis_event1B) xét trong khoảng thời gian DT, thì cell bị loại bỏ khỏi tập hợp tích cực. Hoạt động này được gọi là Sự kiện 1B hay Sự loại bỏ liên kết vô tuyến.

  • Nếu tập hợp tích cực đã đầy và Best_candidate_pilot_Ec/I0 >

Worst_Old_pilot_Ec/I0 + Hysteresis_event1C xét trong một khoảng thời gian DT, thì cell yếu nhất trong tập hợp tích cực được thay thế bởi một cell ứng cử khoẻ nhất trong tập hợp ứng cử. Hoạt động này gọi là Sự kiện 1C hoặc là Sự kết hợp bổ sung và loại bỏ liên kết vô tuyến. Trong hình 3-18, giả sử kích cỡ lớn nhất là 2.

Trong thuật toán chuyển giao mềm của WCDMA, sử dụng ngưỡng tương đối chứ không phải ngưỡng tuyệt đối. So với IS-95A, lợi ích lớn nhất của thuật toán trong WCDMA này sự tham số hoá dễ dàng mà không cần điều chỉnh các thông số cho các vùng nhiễu thấp và cao do các ngưỡng tương đối.



c. Các đặc điểm của chuyển giao mềm.

So với phương thức chuyển giao cứng truyền thống, chuyển giao mềm có những ưu điểm rõ ràng, như loại trừ hiệu ứng “ping-pong” và tạo ra sự liên tục trong truyền dẫn (không có ngắt quãng trong chuyển giao mềm). Không có hiệu ứng ”ping-pong” có nghĩa là tải trong báo hiệu mạng thấp hơn và trong chuyển giao mềm, thì không có suy hao dữ liệu do truyền dẫn bị ngắt như trong chuyển giao cứng.

Ngoài điều khiển di động, còn có một lý do khác để thực hiện chuyển giao mềm trong WCDMA; cùng với điều khiển công suất, chuyển giao mềm cũng được sử dụng như là một cơ cấu giảm nhiễu. Hình 3-19 chỉ ra 2 mô hình. Trong hình (a), chỉ sử dụng điều khiển công suất, trong hình (b) sử dụng cả điều khiển công suất và chuyển giao mềm.



Hình 3- Sự suy giảm nhiễu do có chuyển giao mềm trong UL

Giả sử rằng MS di chuyển từ BS1 đến BS2. Tại vị trí hiện tại tín hiệu pilot nhận được từ BS2 đã mạnh hơn từ BS1. Điều này có nghĩa là BS2 “tốt hơn” BS1.

Trong hình (a) vòng điều khiển công suất tăng năng lượng phát đến MS để đảm bảo QoS trên đường lên khi MS di chuyển ra xa khỏi BS phục vụ của nó, BS1. Trong hình (b), MS đang trong trạng thái chuyển giao mềm: cả BS1 và BS2 đều đồng thời lắng nghe MS. Sau đó tín hiệu nhận được chuyển đến RNC để kết hợp. Trên đường lên, sự kết hợp chọn lựa được sử dụng trong chuyển giao mềm. Khung khỏe hơn được chọn lựa và khung yếu hơn bị loại bỏ. Bởi vì BS2 “tốt hơn” BS1, để đáp ứng QoS mục tiêu, công suất phát được yêu cầu từ MS thấp hơn công suất cần thiết trong mô hình (a). Vì thế, nhiễu được tạo ra bởi MS này trên đường lên thất hơn khi có chuyển giao mềm vì chuyển giao mềm luôn giữ cho MS được kết nối với BS tốt nhất. Trên đường xuống, tình huống phức tạp hơn. Mặc dù việc kết hợp theo hệ số lớn nhất đem lại độ lợi phân tập macro, vẫn yêu cầu các kênh đường xuống mở rộng để hỗ trợ chuyển giao mềm.

3.3.2.2 Đo đạc chuyển giao.

Trong WCDMA, UE liên tục quét các cell khác có cùng tần số khi sử dụng kênh riêng trong trạng thái cell_DCH. UE thường sử dụng bộ lọc để tìm ra kênh đồng bộ sơ cấp (P-SCH) của các cell lân cận. Tất cả các cell phát cùng mã đồng bộ mà UE đang tìm kiếm. UE nhận dạng các cell bằng kênh đồng bộ thứ cấp (S-SCH) và kênh pilot (CPICH). Sau thủ tục đồng bộ, UE có thể tiến hành đo pilot_Ec/I0 và nhận dạng cell.

Bởi vì các Nút B WCDMA có thể không đồng bộ, UE cũng giải mã số khung hệ thống (SFN) từ các cell lân cận. SFN cho biết việc định thời Nút B với độ phân giải khung là 10ms. SFN được phát trên kênh quảng bá, BCH, tiến hành trên kênh vật lý điều khiển chung sơ cấp, P-CCPCH.

Thủ tục đo đạc chuyển giao trong cùng tần số được trình bày trong hình 3.23.

Chú ý:

+ Số các đỉnh xung mà UE có thể thu được bằng bộ lọc kết hợp của nó càng nhiều, việc nhận dạng cell WCDMA diễn ra càng lâu. Thời gian nhận dạng cell phụ thuộc các yếu tố sau:



  • Số các nhánh đa đường..

  • Số các cell trong phạm vi UE thu bắt được sóng.

  • Số các cell đã tìm thấy.

  • Kích cỡ của danh sách các cell lân cận.

+ UE cần phải có khả năng báo cáo việc đo đạc:

  • Trong vòng 200ms đối với một cell được nhận dạng.

  • Trong vòng 800ms đối với một cell mới trong danh sách cell lân cận.

  • Trong vòng 30ms với một cell mới ngoài danh sách các cell lân cận.



Hình 3- Thủ tục đo đạc chuyển giao trong cùng tần số.

Pha (1) Nhận dạng cell

Thời gian nhận dạng cell trong pha (1) hình 3-20 chủ yếu phụ thuộc vào số các cell và các thành phần đa đường mà UE có thể thu được. UE cần kiểm tra mọi đỉnh xung trong bộ lọc kết hợp của nó. Số đỉnh càng ít, việc nhận dạng cell càng nhanh. Chiều dài của danh sách cell lân cận chỉ có ảnh hưởng ít đến hiệu suất đo đạc chuyển giao.

Yêu cầu hiệu suất đo đạc chuyển giao 3GPP đối với UE như sau: với CPICH Ec/I0 >-20dB, và SCH Ec/I0 > -20dB UE có khả năng báo cáo đo đạc trong vòng 200ms từ một cell đã được nhận dạng và trong vòng 800ms từ một cell mới nằm trong tập hợp giám sát. Hình 3-21 đưa ra mô hình UE kết nối với với cell 1 và nó cần nhận dạng cell 2 đang gần đạt tới giá trị Window-add . Kết quả Ec/I0 thu được như sau:


  1. Nếu cấp 10% cho kênh CPICH và cho SCH thì Ec/Ior= -10dB.

  2. Giả sử Window_add =3dB trong đó UE cần nhận dạng các cell khi nó thấp hơn cell khoẻ nhất 3dB. Trường hợp này có Ior/Ioc1=-3dB.

  3. Giả sử nhiễu từ các cell khác cao hơn công suất tín hiệu từ máy chủ tốt nhất là 3dB, thì Ioc2/Ioc1

= == - 8.5dB = - 18.5 dB (3.1)

Trong mô hình này Ec/I0 = -18.5dB tốt hơn -20dB đưa ra trong các yêu cầu về hiệu suất.





Hình 3- Mô hình đo đạc chuyển giao trong cùng tần số.

Pha (2): Giải mã số hiệu khung (SFN).

Trong pha (2) của hình 3-20, UE giải mã số hiệu khung hệ thống từ BCH nó được phát trên kênh P-CCPCH. Nếu ta cấp phát 5% của Nút B cho P-CCPCH, kết quả Ec/I0 = -21.5dB. Yêu cầu hiệu suất cho giải mã BCH với BLER=1% là -2.2dB.

Trước khi Ec/I0 pilot được được dùng trong thuật toán cập nhật tập hợp tích cực tại UE, một số công việc lọc đã được áp dụng để kết quả đáng tin cậy hơn. Việc lọc kết quả đo được lọc trong cả lớp 1 và lớp 3. Lọc tại lớp 3 có thể được điều khiển bởi mạng. Việc lọc kết quả đo chuyển giao WCDMA được trình bày trong hình 3-22.

Báo cáo đo đạc chuyển giao từ UE đến RNC phải được xây dựng một cách định kỳ, giống như trong GSM hoặc khởi xướng sự kiện. Việc báo cáo khởi xướng các sự kiện cung cấp các chỉ tiêu giống như báo cáo định kỳ nhưng có tải báo hiệu thấp hơn.





Hình 3- Sơ đồ lọc và báo cáo đo đạc chuyển giao mềm.

3.3.2.3 Lợi ích liên kết chuyển giao mềm.

Mục đích đầu tiên của chuyển giao mềm là để đem lại một sự chuyển giao không bị ngắt quãng và làm cho hệ thống hoạt động tốt. Điều đó chỉ có thể đạt được nhờ 3 lợi ích của cơ cấu chuyển giao mềm như sau:



  • Độ lợi phân tập vĩ mô: độ lợi ích phân tâp nhở phadinh chậm và sự sụt đột ngột của cường độ tín hiệu do các nguyên nhân chẳng hạn như sự di chuyển của UE vòng quanh một góc.

  • Độ lợi phân tập vi mô: Độ lợi phân tập nhờ phadinh nhanh.

  • Việc chia sẻ tải đường xuống: Một UE khi chuyển giao mềm thu công suất từ nhiều Nút B, điều đó cho thấy công suất phát lớn nhất đến UE trong khi chuyển giao mềm X-way được nhân với hệ số X, nghĩa là vùng phủ được mở rộng.

Ba lợi ích này của chuyển giao mềm có thể cải thiện vùng phủ và dung lượng mạng WCDMA. Tiếp theo sẽ đề cập đến kết quả của các lợi ích chuyển giao mềm phân tập vi mô thu được từ bằng các công cụ mô phỏng ở mức liên kết. Những lợi ích được trình bày liên quan đến trường hợp chuyển giao cứng lý tưởng, trong đó UE có thể được kết nối tới Nút B với tỷ số Ec/I0 pilot cao nhất.

Một ví dụ mô phỏng kết quả truyền thoại tốc độ 8kbps trong kênh ITU Pedestrian A, chuyển động vận tốc 3km/h, giả sử UE đang chuyển giao mềm với 2 Nút B. Suy hao đường truyền tương đối của UE đến Nút B#1 so với Nút B#2 là: 0, -3, -6,-10dB. Độ lợi cao nhất thu được suy hao đường truyền tới 2 Nút B giống nhau, tức là độ chênh lệch tương đối là 0dB. Hình 3-23 chỉ ra độ lợi chuyển giao mềm của công suất phát đường lên với phân tập 2 nhánh anten thu Nút B. Hình 3-24 chỉ ra độ lợi tương ứng của công suất phát đường xuống mà không có phân tập anten phát hay thu. Và độ lợi liên quan đến trường hợp liên kết đơn trong đó UE chỉ được kết nối với Nút B tốt nhất. Do kênh ITU Pedestrian A ít phân tập đa đường, và vì thế độ lợi chuyển giao mềm phân tập vi mô tương đối cao. Nếu phân tập đa đường càng nhiều thì độ lợi có xu hướng giảm đi.

Trong hình 3-23, độ giảm lớn nhất của công suất phát UE do chuyển giao mềm thu được là 1.8dB nếu suy hao đường truyền ở cả 2 Nút B giống nhau. Nếu sự khác nhau về suy hao đường truyền đến 2 Nút B rất lớn, thì về mặt lý thuyết không bao giờ nên tăng công suất phát UE khi không có năng lượng bổ sung nhưng lại có nhiều Nút B cố dò tìm tín hiệu. Thực tế, nếu độ chênh lệch suy hao đường truyền rất lớn thì chuyển giao mềm có thể làm tăng công suất phát UE. Việc tăng này gây ra do các lỗi báo hiệu của các lệnh điều khiển công suất đường lên được phát trên liên kết đường xuống. Nhưng thường thì Nút B sẽ không nằm trong “tập hợp tích cực” của UE nếu suy hao đường truyền đến Nút B nào đó lớn hơn 3-6dB so với suy hao đường truyền tới Nút B khoẻ nhất trong “tập hợp tích cực” của UE.

Trên đường xuống, độ lợi chuyển giao mềm lớn nhất là 2.3dB (hình 3-24), lớn hơn nhiều so với trên đường lên (hình 3-23). Nguyên nhân là do không có phân tập anten trên đường xuống và vì thế mà đường xuống không cần nhiều độ lợi chuyển giao mềm phân tập vi mô.





Hình 3- Độ lợi chuyển giao mềm của công suất phát đường lên(giá trị dương = độ lợi, giá trị âm = suy hao)

Trên đường xuống, chuyển giao mềm gây ra tăng công suất phát đường xuống yêu cầu nếu như độ chênh lệch suy hao đường truyền lớn hơn nhiều 4-5dB (đối với ví dụ này). Trong trường hợp đó, UE không nhận được độ lợi nào của tín hiệu phát từ Nút B với suy hao lớn nhất. Vì thế công suất phát từ Nút B đó đến UE sẽ chỉ biến thành nhiễu trong mạng.





Hình 3- Độ lợi chuyển giao mềm trong công suất phát đường xuống (Giá trị dương =độ lợi, âm =suy hao)

Kết quả mô phỏng đó cũng cung cấp các giá trị Window_add và Window_drop. Các giá trị điển hình của các thông số này như trong bảng 3-5.



Bảng 3- Các giá trị của cửa sổ.

Window_add

Window_drop

1 - 3dB

2 - 5dB

3.3.2.4 Tổng phí của chuyển giao mềm

Tổng phí của chuyển giao mềm được sử dụng để đánh giá chất lượng của hoạt động chuyển giao mềm trong một mạng. Tổng phí chuyển giao mềm được xác định như sau:



= (3.2)

Trong đó, N là kích cỡ tập hợp tích cực và Pn là xác suất trung bình của UE đang thực hiện chuyển giao mềm n_đường (n_way). Chuyển giao mềm one_way là trường hợp, UE kết nối tới một Nút B, two_way có nghĩa là UE được kết nối tới 2 Nút B… được chỉ ra trong hình 3-25. Đối với một kết nối giữa UE và Nút B yêu cầu tài nguyên băng cơ bản logic, việc dự trữ dung lượng phát trên giao diện Iub, một nguồn tài nguyên RNC, nên tổng phí của chuyển giao mềm cũng có thể như là việc đo tài nguyên truyền dẫn/phần cứng cần bổ sung để thực thi chuyển giao mềm. Việc hoạch định mạng vô tuyến có nhiệm vụ thiết lập các thông số chuyển giao thích hợp và quy hoạch các site để tổng phí của chuyển giao mềm trong khoảng 20-40% đối với lưới cell chuẩn sáu cạnh với 3 sector site. Nếu tổng phí chuyển giao mềm vượt quá giới hạn cho phép thì sẽ dẫn đến giảm dung lượng đường xuống. Trên đường xuống, mỗi kết nối chuyển giao mềm đều làm tăng nhiễu cho mạng. Khi mức tăng nhiễu vượt quá mức độ lợi phân tập, chuyển giao mềm không đem lại bất cứ lợi ích nào cho hiệu suất của hệ thống.

Tổng phí chuyển giao mềm có thể được điều chỉnh bằng việc chọn hợp lý các thông số Window_add, Window_drop, và kích cỡ “tập hợp tích cực”. Tuy nhiên cũng có một số các yếu tố ảnh hưởng đến tổng phí chuyển giao mềm mà không thể kiểm soát được bằng việc thiết lập các thông số chuyển giao mềm, như:


  • Cấu hình mạng: Các site được đặt liên quan đến nhau như thế nào, số sector trên một site…

  • Các mô hình bức xạ của anten Nút B.

  • Các đặc điểm suy hao đường truyền và phadinh che khuất.

  • Số các Nút B trung bình mà UE có thể đồng bộ được.



Hình 3- Tổng phí chuyển giao mềm

Một ví dụ về tổng phí chuyển giao mềm được đưa ra trong hình 3-26 cho mạng các cell chuẩn 6 cạnh với 3 sector site. Kết quả nhận được bằng việc mô phỏng động ở mức mạng. Đây là kết quả của một cell có bán kính 666m và 2000m, và mỗi sector sử dụng anten 650 chuẩn. Suy hao đường truyền được xác định theo mô hình Okumura-Hata, giả sử thành phần phadinh che khuất phân bố từng đoạn với độ lệch chuẩn là 8dB. Công suất phát của kênh CPICH cố định bằng 10% và 20% công suất phát Nút B lớn nhất tương ứng cho các cell nhỏ và cell lớn. Công suất của kênh SCH là -3.0dB so với P-CPICH. Kích cỡ của tập hợp tích cực là 3.

Có thể nhận thấy rằng tổng phí chuyển giao mềm tăng gần như tuyến tính khi Window_add và Window_drop tăng lên. Với việc thiết lập cùng các thông số cho chuyển giao mềm, thì tổng phí trong mô hình cell nhỏ thường lớn hơn các cell lớn. Bởi vì các UE trong mạng các cell lớn có thể đồng bộ với một số các Nút B, còn các UE trong mạng các cell nhỏ lại có thể đồng bộ với nhiều các Nút B hơn. Giả sử mục đích thiết kế là có tổng phí chuyển giao mềm là 20-40% thì có kết quả như hình 3-26. Kết quả này cho thấy thiết lập các thông số thích hợp là Window_add = 1-3dB trong các cell nhỏ và các giá trị lớn hơn không đáng kể trong các cell lớn. Tuy nhiên có thể thấy cấu hình hợp lý cho mạng chỉ có thể là các cell với 3 sector site. Đối với việc thiết lập các thông số chuyển giao mềm giống nhau, tổng phí chuyển giao mềm tăng khi chuyển từ 3 sector site thành 6 sector site. Tổng phí chuyển giao mềm có thể tăng gần 30% khi so sánh trường hợp cấu hình 3 sector site so với cấu hình 6 sector site. Điều này dẫn tới sự chọn lựa các giá trị Window_add/Window_drop thấp hơn khi tăng số sector.



Hình 3- Tổng phí chuyển giao mềm và thông số Window_add cho lưới cell 6 cạnh 3 sector site, với hai bán kính khác nhau.

3.3.2.5 Độ lợi dung lượng mạng của chuyển giao mềm.

Độ lợi dung lượng mạng có thể của chuyển giao mềm chủ yếu phụ thuộc và tổng phí chuyển giao mềm (tức là tỷ lệ tương đối của các UE thực hiện chuyển giao mềm), độ lợi liên kết chuyển giao mềm, và thuật toán điều khiển công suất được áp dụng. Có 2 thuật toán điều khiển công suất đường xuống cho các UE trong chuyển giao mềm:



  1. Điều khiển công suất thường (điều khiển công suất nhanh)

  2. Sơ đồ truyền dẫn phân tập chọn lựa site (SSDT).

SSDT dựa vào thông tin phản hồi từ UE, nên chỉ có một trong các Nút B trong “tập hợp tích cực” truyền dữ liệu, còn các Nút B khác chỉ phát các thông tin điểu khiển lớp vật lý. Vì thế SSDT tương đương với phân tập phát chọn lựa, còn điều khiển công suất nhanh các UE trong chuyển giao mềm có thể tương đương với phân tập phát tăng ích. Độ lợi có thể của SSDT đạt được nhờ việc giảm nhiễu trên đường xuống, và bù cho suy hao của độ lợi phân tập trên đường xuống cho dữ liệu người sử dụng. Về mặt lý thuyết, rõ ràng rằng độ lợi của SSDT lớn hơn với tốc dữ liệu cao mà tại đó tổng phí của các thông tin điều khiển không đáng kể.

Độ lợi về dung lượng của chuyển giao mềm kết hợp SSDT có độ lớn bằng với độ lợi trong trường hợp kết hợp chuyển giao mềm và điều khiển công suất thông thường. Thường không đạt được độ lợi lớn từ SSDT, và trong một vài trường hợp độ lợi chuyển thành suy hao. Nguyên nhân được giải thích như sau: Một UE đang chuyển giao mềm, gửi thông tin phản hồi một cách định kỳ đến các Nút B trong “tập hợp tích cực”, các lệnh này yêu cầu các Nút B cần phát dữ liệu. Hoạt động này gây ra sự biến động công suất lớn tại các Nút B khác nhau bởi vì việc truyền dẫn tới các UE được tắt, bật tương đối nhanh khi được điều khiển bởi các UE trong chuyển giao mềm. Sự truyền dẫn của Nút B biến đổi tới UE trong chuyển giao mềm không nằm trong sự điều khiển mạng, hoàn toàn do UE điều khiển. Vì thế, mặc dù mô hình SSDT làm giảm tổng công suất phát trung bình của Nút B, nhưng sự thay đổi tổng công suất phát cũng tăng lên. Việc tăng lên này dẫn tới khoảng hở điều khiển công suất yêu cầu lớn hơn, có nghĩa là sẽ giảm độ lợi của SSDT. Các khía cạnh khác cần chú ý về mặt chỉ tiêu kỹ thuật là ảnh hưởng của vận tốc UE, tốc độ UE càng cao phản hồi của UE càng khó đồng bộ với trạng thái kênh thực tế. Tại một số vận tốc, các vấn đề về tiếng vọng xuất hiện cho nên UE thường phải yêu cầu Nút B “sai” phát thông qua báo hiệu phản hồi tới mạng. Sự ảnh hưởng này có thể rất lớn khi tốc độ phadinh bằng tốc độ phản hồi.



3.3.3 Chuyển giao giữa các hệ thống WCDMA và GSM.

Các chuẩn WCDMA và GSM hỗ trợ chuyển giao cả hai đường giữa WCDMA và GSM. Sự chuyển giao này có thể sử dụng cho mục đích phủ sóng và cân bằng tải. Tại pha ban đầu khi triển khai WCDMA, chuyển giao tới hệ thống GSM có thể sử dụng để giảm tải trong các tế bào GSM. Mô hình này được chỉ ra trong hình 3-27. Khi lưu lượng trong mạng WCDMA tăng, thì rất cần chuyển giao cho mục đích tải trên cả đường lên và đường xuống. Chuyển giao giữa các hệ thống được khởi xướng tại RNC/BSC và từ góc độ hệ thống thu, thì chuyển giao giữa các hệ thống tương tự như chuyển giao giữa các RNC hay chuyển giao giữa các BSC. Thuật toán và việc khởi xướng này không được chuẩn hoá.





Hình 3- Chuyển giao giữa các hệ thống GSM và WCDMA.

Thủ tục chuyển giao như 3-28. Việc đo đạc chuyển giao giữa các hệ thống không hoạt động thường xuyên nhưng sẽ được khởi động khi có nhu cầu thực hiện chuyển giao giữa các hệ thống. Việc khởi xướng chuyển giao là một thuật toán do RNC thực hiện và có thể dựa vào chất lượng (BLER) hay công suất phát yêu cầu. Khi khởi xướng đo đạc, đầu tiên UE sẽ đo công suất tín hiệu của các tần số GSM trong danh sách lân cận. Khi kết quả đo đạc đó được gửi tới RNC, nó ra lệnh cho UE giải mã nhận dạng trạm gốc (BSIC) của cell ứng cử GSM tốt nhất. Khi RNC nhận được BSIC, một lệnh chuyển giao được gửi tới UE. Việc đo đạc có thể hoàn thành trong 2s.





Hình 3- Thủ tục chuyển giao giữa các hệ thống.

  • Chế độ nén.

WCDMA sử dụng việc thu phát liên tục và không thể tiến hành đo đạc với bộ nhận đơn nếu như không có những khoảng gián đoạn tạo ra bởi các tín hiệu WCDMA. Vì thế, chế độ nén cần thiết cho việc đo đạc trong chuyển giao giữa các tần số và chuyển giao giữa các hệ thống. Trong suốt khoảng gián đoạn của chế độ nén, điều khiển công suất nhanh không thể sử dụng và một phần độ lợi ghép chèn bị mất. Vì vậy, trong suốt khung nén cần Ec/N0 cao hơn dẫn tới dung lượng bị giảm.

Chế độ nén cũng ảnh hưởng đến vùng phủ sóng đường lên của các dịch vụ thời gian thực, trong đó tốc độ bit không thể giảm trong suốt chế độ nén. Vì thế mà thủ tục chuyển giao giữa các hệ thống phải được bắt đầu đủ sớm tại biên giới các cell để tránh sự suy giảm chất lượng tại chế độ nén.

Chuyển giao từ GSM sang WCDMA được bắt đầu tại BSC của GSM. Không cần sử dụng chế độ nén để tiến hành đo đạc WCDMA từ GSM vì GSM sử dụng chế độ thu phát không liên tục.

Thời gian ngắt dịch vụ trong chuyển giao giữa các hệ thống lớn nhất là 40ms. Thời gian ngắt là khoảng thời gian giữa block chuyển vận thu cuối cùng trên tần số cũ và thời gian UE bắt đầu phát trên kênh đường lên mới. Tổng khoảng hở dịch vụ lớn hơn thời gian ngắt vì UE cần nhận được kênh riêng hoạt động trong mạng GSM. Khoảng hở dịch vụ thường dưới 80ms tương tự như chuyển giao trong GSM. Khoảng hở đó không làm giảm chất lượng dịch vụ.



3.3.4 Chuyển giao giữa các tần số trong WCDMA.

Hầu hết các bộ vận hành UMTS đều có 2 hoặc 3 tần số FDD có hiệu lực. Việc vận hành có thể bắt đầu sử dụng một tần số và tần số thứ hai, thứ ba. Sau đó cần để tăng dung lượng, một vài tần số có thể sử dụng được chỉ ra trong hình 3-29. Một vài tần số được sử dụng trong cùng một site sẽ tăng dung lượng của site đó hoặc các lớp micro và macro được sử dụng các tần số khác nhau. Chuyển giao giữa các tần số sóng mang WCDMA cần sử dụng phương pháp này.

Trong chuyển giao này, chế độ nén cũng được sử dụng trong việc đo đạc chuyển giao giống như trong chuyển giao giữa các hệ thống. Thủ tục chuyển giao giữa các tần số được chỉ ra trong hình 3-30. UE cũng sử dụng thủ tục đồng bộ WCDMA giống như chuyển giao trong tần số để nhận dạng cell có tần số mục tiêu. Thời gian nhận dạng cell chủ yếu phù thuộc vào số các cell và số các thành phần đa đường mà UE có thể thu được giống như trong chuyển giao cùng tần số. Yêu cầu thời gian nhận dạng cell là 5s với Ec/I0 của CPICH > -20dB.



Hình 3- Nhu cầu chuyển giao giữa các tần số sóng mang WCDMA


Hình 3- Thủ tục chuyển giao giữa các tần số.

3.3.5 Tổng kết chuyển giao.

Các kiểu chuyển giao được tổng kết trong bảng 3-6. Chuyển giao điển hình nhất của WCDMA là chuyển giao cùng tần số được điều khiển bởi các thông số trong hình 3-31. Báo cáo chuyển giao cùng tần số thường khởi xướng cho sự kiện, và RNC ra lệnh thực hiện chuyển giao dựa vào các báo cáo đo đạc. Trong trường hợp chuyển giao trong cùng tần số UE được kết nối với Nút B tốt nhất để tránh hiệu ứng gần xa, và RNC luôn phải hoạt động để lựa chọn các cell mục tiêu.



Bảng 3- Tổng kết chuyển giao

Kiểu chuyển giao

Đo đạc chuyển giao

Báo cáo đo đạc chuyển giao từ UE đến RNC

Mục đích chuyển giao

Chuyển giao trong tần số WCDMA

Đo trong toàn bộ thời gian sử dụng bộ lọc kết hợp

Báo cáo khởi xướng sự kiện

- Sự di động thông thường

Chuyển giao giữa các hệ thống WCDMA -GSM

Việc đo chỉ bắt đầu khi cần thiết, sử dụng chế độ nén

Báo cáo định kỳ trong suốt chế độ nén

    • Phủ sóng

    • Tải

    • Dịch vụ

Chuyển giao giữa các tần số WCDMA

Việc đo chỉ bắt đầu khi cần, sử dụng chế độ nén

Báo cáo định kỳ trong suốt chế độ nén

    • Phủ sóng

    • Tải

Việc đo đạc chuyển giao giữa các hệ thống và giữa các tần số thường chỉ bắt đầu khi cần thực hiện chuyển giao. Chuyển giao giữa các tần số cần để cân bằng tải giữa các sóng mang WCDMA và các lớp cell, và để mở rộng vùng phủ sóng nếu tần số khác không bao phủ hết. Chuyển giao tới hệ thống GSM để mở rộng vùng phủ sóng WCDMA, để cân bằng tải giữa các hệ thống và định hướng các dịch vụ đến các hệ thống phù hợp nhất.





Hình 3- Một ví dụ về mô hình chuyển giao

Một ví dụ của mô hình chuyển giao được trình bày trong hình 3-31. Đầu tiên UE kết nối tới cell 1 với tần số f1. Khi nó di chuyển thì chuyển giao cùng tần số f1 đến cell được thực hiện. Tuy nhiên tại cell 2, tải quá cao, RNC ra lệnh cho chuyển giao giữa các tần số với mục đích tải đến cell 5 với tần số f2. UE chuyển sang tần số f2 và tiếp tục chuyển giao đến cell 6. Khi nó ra khỏi vùng phủ với tần số f2, thì chuyển giao giữa các tần số được thực hiện đến cell 4 với tần số f1.





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©tieuluan.info 2019
được sử dụng cho việc quản lý

    Quê hương