ĐỒ Án tốt nghiệP


Tình hình chuẩn hoá 2,5G và 3G



tải về 0.9 Mb.
trang2/11
Chuyển đổi dữ liệu22.12.2018
Kích0.9 Mb.
1   2   3   4   5   6   7   8   9   10   11

Tình hình chuẩn hoá 2,5G và 3G

1.3.1 Mở đầu

Hiện nay, các bộ tiêu chuẩn công nghệ 2,5G về cơ bản đã được hoàn thiện, cụ thể như sau:



  • 3GPP đã hoàn thiện chỉ tiêu kỹ thuật GPRS, từ đó các tổ chức chuẩn hoá khu vực đã có bộ tiêu chuẩn kỹ thuật GPRS. Một số các nước thuộc nhóm công nghệ này như Châu Âu, Hồng Kông, Nhật Bản đã biên soạn hoặc chấp nhận nguyên vẹn chuẩn cho phù hợp với điều kiện công nghệ của mình.

  • 3GPP2 đã hoàn thiện các chỉ tiêu kỹ thuật CDMA2000 1xEV-DO. Các tổ chức chuẩn hóa khu vực của các nước có công nghệ IS-95A hoặc IS-95B hầu hết đã có tiêu chuẩn áp dụng nguyên vẹn công nghệ 2,5G.

Với công nghệ 3G, tình hình chuẩn hoá phức tạp hơn với 3 mảng chính sau:

  • Công nghệ truy nhập vô tuyến

  • Mạng lõi

  • Giao diện với các hệ thống khác.

1.3.2 Chuẩn hoá công nghệ truy nhập vô tuyến

Trên thế giới hiện đang tồn tại nhiều công nghệ thông tin di động 2G khác nhau với số vốn đầu tư tương đối lớn. Việc xây dựng một hệ thống thông tin di động tiên tiến hơn luôn đòi hỏi phải chú ý tới vấn đề lợi nhuận kinh tế, có nghĩa là các hệ thống thông tin di động mới phải tương thích ngược với các hệ thống 2G hiện có, để tận dụng sự đầu tư về cơ sở hạ tầng của các hệ thống cũ. Như vậy, mục tiêu phát triển đến một tiêu chuẩn duy nhất cho IMT-2000 là không thể đạt được. Trên thực tế, ITU đã chấp nhận sư tồn tại song song của 5 họ công nghệ khác nhau:



  • IMT-MC (IMT-Multi Carrier): CDMA2000

  • IMT-DS (IMT- Direct Sequence): WCDMA –FDD

  • IMT-TC: WCDMA-TDD

  • IMT-SC: TDMA một sóng mang, còn gọi là UWC-136 và EDGE

  • IMT-FT: DECT

Các họ công nghệ này có nền tảng công nghệ khác nhau và được các cơ quan tổ chức tiêu chuẩn hoá khác nhau thực hiện các việc xây dựng chuẩn được trình bày trong hình 1-3



Hình 1- Các họ công nghệ được ITU-R chấp nhận

Trong năm 2002, ITU-R đã chấp thuận 7 loại công nghệ cụ thể, mà thực chất thuộc 5 họ công nghệ trên:



  • CDMA đa sóng mang (cdma2000)

  • CDMA1x-EV

  • CDMA TDD (UTRA)

  • CDMA TDD (TD-SCDMA)

  • W-CDMA (UTRA - FDD)

  • UWC-136 (FDD)

  • FDMA/TDMA: DECT.

Các công nghệ trên bao gồm:

  • Hai tiêu chuẩn TDMA: SC-TDMA (UWC-136) và MC-TDMA (DECT)

  • Ba tiêu chuẩn CDMA : MC-CDMA (cdma2000 ), DS-CDMA (WCDMA) và CDMA-TDD (bao gồm TD-SCDMA và UTRA-TDD).

Ta xét các tiêu chuẩn TDD với các đặc điểm sau:

  • TDD có thể sử dụng các nguồn tài nguyên tần số khác nhau và không cần cặp tần số.

  • TDD phù hợp với truyền dẫn bất đối xứng về tốc độ giữa đường lên và đường xuống, đặc biệt với các dịch vụ dữ liệu dạng IP

  • TDD hoạt động ở cùng tần số cho đường lên và đường xuống, phù hợp cho việc sử dụng các kỹ thuật mới như anten thông minh

  • Chi phí thiết bị hệ thống TDD thấp hơn, có thể thấp hơn từ 20 đến 50% so với các hệ thống FDD.

Tuy nhiên, hạn chế chính của hệ thống TDD là tốc độ di chuyển và diện tích phủ sóng. Các hệ thống TDD chỉ thích hợp với việc triển khai cho các dịch vụ đa phương tiện trong các khu vực mật độ cao và có yêu cầu cao về dung lượng thoại, dữ liệu và các dịch vụ đa phương tiện trong các khu vực tập trung thuê bao lớn. TD-SCDMA là công nghệ do Trung Quốc đề xuất, còn UTRA-TDD được xem là phần bổ sung cho UTRA-FDD tại những vùng có dung lượng rất cao. Hơn nữa các công nghệ này chưa có sản phẩm thương mại. Trên thực tế chỉ có 2 tiêu chuẩn quan trọng nhất đã có sản phẩm thương mại và có khả năng được triển khai rộng rãi trên toàn thế giới là WCDMA (FDD) và cdma2000. WCDMA được phát triển trên cơ sở tương thích với giao thức của mạng lõi GSM (GSM MAP), một hệ thống chiếm tới 65% thị trường thế giới. Còn cdma2000 nhằm tương thích với mạng lõi IS-41, hiện chiếm 15% thị trường. Quá trình phát triển lên 3G cũng sẽ tập trung vào 2 hướng chính này, có thể được tóm tắt trong hình 1-4.



Hình 1- Quá trình phát triển lên 3G của 2 nhánh công nghệ chính

1.3.3 Phân tích hai nhánh công nghệ chính tiến lên 3G

1.3.3.1 Hướng phát triển lên 3G sử dụng công nghệ WCDMA

WCDMA là một tiêu chuẩn thông tin di động 3G của IMT-2000 được phát triển chủ yếu ở Châu Âu với mục đích cho phép các mạng cung cấp khả năng chuyển vùng toàn cầu và để hỗ trợ nhiều dịch vụ thoại, dịch vụ đa phương tiện. Các mạng WCDMA được xây dựng dựa trên cơ sở mạng GSM, tận dụng cơ sở hạ tầng sẵn có của các nhà khai thác mạng GSM. Quá trình phát triển từ GSM lên CDMA qua các giai đoạn trung gian, có thể được tóm tắt trong sơ đồ sau đây:





Hình 1- Quá trình phát triển lên 3G theo nhánh sử dụng công nghệ WCDMA

1.3.3.1.1 GPRS

GPRS là một hệ thống vô tuyến thuộc giai đoạn trung gian, nhưng vẫn là hệ thống 3G nếu xét về mạng lõi. GPRS cung cấp các kết nối số liệu chuyển mạch gói với tốc độ truyền lên tới 171,2Kbps (tốc độ số liệu đỉnh) và hỗ trợ giao thức Internet TCP/IP và X25, nhờ vậy tăng cường đáng kể các dịch vụ số liệu của GSM.

Công việc tích hợp GPRS vào mạng GSM đang tồn tại là một quá trình đơn giản. Một phần các khe trên giao diện vô tuyến dành cho GPRS, cho phép ghép kênh số liệu gói được lập lịch trình trước đối với một số trạm di động. Phân hệ trạm gốc chỉ cần nâng cấp một phần nhỏ liên quan đến khối điều khiển gói (PCU- Packet Control Unit) để cung cấp khả năng định tuyến gói giữa các đầu cuối di động các nút cổng (gateway). Một nâng cấp nhỏ về phần mềm cũng cần thiết để hỗ trợ các hệ thống mã hoá kênh khác nhau.

Mạng lõi GSM được tạo thành từ các kết nối chuyển mạch kênh được mở rộng bằng cách thêm vào các nút chuyển mạch số liệu và gateway mới, được gọi là GGSN (Gateway GPRS Support Node) và SGSN (Serving GPRS Support Node). GPRS là một giải pháp đã được chuẩn hoá hoàn toàn với các giao diện mở rộng và có thể chuyển thẳng lên 3G về cấu trúc mạng lõi.



1.3.3.1.2 EDGE

EDGE (Enhanced Data rates for Global Evolution) là một kỹ thuật truyền dẫn 3G đã được chấp nhận và có thể triển khai trong phổ tần hiện có của các nhà khai thác TDMA và GSM. EDGE tái sử dụng băng tần sóng mang và cấu trúc khe thời gian của GSM, và được thiết kế nhằm tăng tốc độ số liệu của người sử dụng trong mạng GPRS hoặc HSCSD bằng cách sử dụng các hệ thống cao cấp và công nghệ tiên tiến khác. Vì vậy, cơ sở hạ tầng và thiết bị đầu cuối hoàn toàn phù hợp với EDGE hoàn toàn tương thích với GSM và GRPS.



1.3.3.1.3 WCDMA hay UMTS/FDD

WCDMA (Wideband Code Division Multiple Access) là một công nghệ truy nhập vô tuyến được phát triển mạnh ở Châu Âu. Hệ thống này hoạt động ở chế độ FDD và dựa trên kỹ thuật trải phổ chuỗi trực tiếp (DSSS- Direct Sequence Spectrum) sử dụng tốc độ chip 3,84Mcps bên trong băng tần 5MHz. Băng tần rộng hơn và tốc độ trải phổ cao làm tăng độ lợi xử lý và một giải pháp thu đa đường tốt hơn, đó là đặc điểm quyết định để chuẩn bị cho IMT-2000.

WCDMA hỗ trợ trọn vẹn cả dịch vụ chuyển mạch kênh và chuyển mạch gói tốc độ cao và đảm bảo sự hoạt động đồng thời các dịch vụ hỗn hợp với chế độ gói hoạt động ở mức hiệu quả cao nhất. Hơn nữa WCDMA có thể hỗ trợ các tốc độ số liệu khác nhau, dựa trên thủ tục điều chỉnh tốc độ.

Chuẩn WCDMA hiện thời sử dụng phương pháp điều chế QPSK, một phương pháp điều chế tốt hơn 8-PSK, cung cấp tốc độ số liệu đỉnh là 2Mbps với chất lượng truyền tốt trong vùng phủ rộng.

WCDMA là công nghệ truyền dẫn vô tuyến mới với mạng truy nhập vô tuyến mới, được gọi là UTRAN, bao gồm các phần tử mạng mới như RNC (Radio Network Controller) và NodeB (tên gọi trạm gốc mới trong UMTS)

Tuy nhiên mạng lõi GPRS/EDGE có thể được sử dụng lại và các thiết bị đầu cuối hoạt động ở nhiều chế độ có khả năng hỗ trợ GSM/GPRS/EDGE và cả WCDMA.



1.3.3.2 Hướng phát triển lên 3G sử dụng công nghệ cdma2000.

Hệ thống cdma2000 gồm một số nhánh hoặc giai đoạn phát triển khác nhau để hỗ trợ các dịch vụ phụ được tăng cường. Nói chung cdma2000 là một cách tiếp cận đa sóng mang cho các sóng có độ rộng n lần 1,25MHz hoạt động ở chế độ FDD. Nhưng công việc chuẩn hoá tập trung vào giải pháp một sóng mang đơn 1,25MHz (1x) với tốc độ chip gần giống IS-95. cdma2000 được phát triển từ các mạng IS-95 của hệ thống thông tin di động 2G, có thể mô tả quá trình phát triển trong hình vẽ sau:





Hình 1- Quá trình phát triển lên 3G theo nhánh cdma2000.

1.3.3.2.1 IS-95B.

IS-95B, hay cdmaOne được coi là công nghệ thông tin di động 2,5G thuộc nhánh phát triển cdma2000, là một tiêu chuẩn khá linh hoạt cho phép cung cấp dịch vụ số liệu tốc độ lên đến 115Kbps



1.3.3.2.2 cdma2000 1xRTT

Giai đoạn đầu của cdma2000 được gọi là 1xRTT hay chỉ là 1xEV-DO, được thiết kế nhằm cải thiện dung lượng thoại cua IS-95B và để hỗ trợ khả năng truyền số liệu ở tốc độ đỉnh lên tới 307,2Kbps. Tuy nhiên, các thiết bị đầu cuối thương mại của 1x mới chỉ cho phép tốc độ số liệu đỉnh lên tới 153,6kbps. Những cải thiện so với IS-95 đạt được nhờ đưa vào một số công nghệ tiên tiến như điều chế QPSK và mã hoá Turbo cho các dịch vụ số liệu cùng với khả năng điều khiển công suất nhanh ở đường xuống và phân tập phát.



1.3.3.2.3 cdma2000 1xEV-DO

1xEV-DO, được hình thành từ công nghệ HDR (High Data Rate) của Qualcomm, được chấp nhận với tên này như là một tiêu chuẩn thông tin di động 3G vào tháng 8 năm 2001 và báo hiệu cho sự phát triển của giải pháp đơn sóng mang đối với truyền số liệu gói riêng biệt.

Nguyên lý cơ bản của hệ thống này là chia các dịch vụ thoại và dịch vụ số liệu tốc độ cao vào các sóng mang khác nhau. 1xEV-DO có thể được xem như một mạng số liệu “xếp chồng”, yêu cầu một sóng mang riêng. Để tiến hành các cuộc gọi vừa có thoại, vừa có số liệu trên cấu trúc “xếp chồng” này cần có các thiết bị hoạt động ở 2 chế độ 1x và 1xEV-DO.

1. 3.3.2.4 cdma2000 1xEV-DV

Trong công nghệ 1xEV-DO có sự dư thừa về tài nguyên do sự phân biệt cố định tài nguyên dành cho thoại và tài nguyên dành cho số liệu. Do đó, CDG, nhóm phát triển CDMA, khởi đầu pha thứ ba của cdma2000 đưa các dịch vụ thoại và số liệu quay về chỉ dùng một sóng mang 1,25MHz và tiếp tục duy trì sự tương thích ngược với 1xRTT. Tốc độ số liệu cực đại của người sử dụng lên tới 3,1Mbps tương ứng với kích thước gói dữ liệu 3940 bit trong khoảng thời gian 1,25ms.

Mặc dù kỹ thuật truyền dẫn cơ bản được định hình, vẫn có nhiều đề xuất công nghệ cho các thành phần chưa được quyết định kể cả tiêu chuẩn cho đường xuống của 1xEV-DV.

1.3.3.2.5 cdma2000 3x(MC- CDMA )

cdma2000 3x, hay 3xRTT, đề cập đến sự lựa chọn đa sóng mang ban đầu trong cấu hình vô tuyến cdma2000 và được gọi là MC-CDMA (Multi carrier) thuộc IMT-MC trong IMT-2000. Công nghệ này liên quan đến việc sử dụng 3 sóng mang 1x để tăng tốc độ số liệu và được thiết kế cho dải tần 5MHz (gồm 3 kênh 1,25Mhz). Sự lựa chọn đa sóng mang này chỉ áp dụng được trong truyền dẫn đường xuống. Đường lên trải phổ trực tiếp, giống như WCDMA với tốc độ chip hơi thấp hơn một chút 3,6864Mcps (3 lần 1,2288Mcps).



1.3.4 Tổng kết

Như vậy, trên thế giới hiện đang tồn tại các công nghệ khác để xây dựng hệ thống thông tin di động 3G. Các nước khi lựa chọn các công nghệ 3G có thể căn cứ theo ITU-R M.1457 để xác định các chỉ tiêu chủ yếu của họ công nghệ truy nhập vô tuyến và xây dựng tiêu chuẩn trên cơ sở tập hợp biên soạn hoặc áp dụng nguyên vẹn theo các tiêu chuẩn của SDO sao cho phù hợp với điều kiện của mình.



Chương 2. TỔNG QUAN CÔNG NGHỆ WCDMA TRONG HỆ THỐNG UMTS.

2.1 Nguyên lý CDMA

2.1.1 Nguyên lý trải phổ CDMA

Các hệ thống số được thiết kế để tận dụng dung lượng một cách tối đa. Theo nguyên lý dung lượng kênh truyền của Shannon được mô tả trong (2.1), rõ ràng dung lượng kênh truyền có thể được tăng lên bằng cách tăng băng tần kênh truyền.

C = B. log2(1+S/N) (2.1)

Trong đó B là băng thông (Hz), C là dung lượng kênh (bit/s), S là công suất tín hiệu và N là công suất tạp âm.

Vì vậy, Đối với một tỉ số S/N cụ thể (SNR), dung lượng tăng lên nếu băng thông sử dụng để truyền tăng. CDMA là công nghệ thực hiện trải tín hiệu gốc thành tín hiệu băng rộng trước khi truyền đi. CDMA thường được gọi là Kỹ thuật đa truy nhập trải phổ (SSMA).Tỷ số độ rộng băng tần truyền thực với độ rộng băng tần của thông tin cần truyền được gọi là độ lợi xử lý (GP ) hoặc là hệ số trải phổ.

GP = B / Bi hoặc GP = B/R (2.2)

Trong đó Bt ­:là độ rộng băng tần truyền thực tế

B : độ rộng băng tần của tín hiệu mang tin

B : là độ rộng băng tần RF

R : là tốc độ thông tin

Mối quan hệ giữa tỷ số S/N và tỷ số Eb/I0, trong đó Eb là năng lượng trên một bit, và I0 là mật độ phổ năng lượng tạp âm, thể hiện trong công thức sau :

(2.3)

Vì thế, với một yêu cầu Eb/I0 xác định, độ lợi xử lý càng cao, thì tỷ số S/N yêu cầu càng thấp. Trong hệ thống CDMA đầu tiên, IS-95, băng thông truyền dẫn là 1.25MHz. Trong hệ thống WCDMA, băng thông truyền khoảng 5MHz.

Trong CDMA, mỗi người sử dụng được gán một chuỗi mã duy nhất (mã trải phổ) để trải tín hiệu thông tin thành một tín hiệu băng rộng trước khi truyền đi. Bên thu biết được chuỗi mã của người sử dụng đó và giải mã để khôi phục tín hiệu gốc.

2.1.2 Kỹ thuật trải phổ và giải trải phổ

Trải phổ và giải trải phổ là hoạt động cơ bản nhất trong các hệ thống DS-CDMA. Dữ liệu người sử dụng ngụ ý là chuỗi bit được điều chế BPSK có tốc độ là R. Hoạt động trải phổ chính là nhân mỗi bit dữ liệu người sử dụng với một chuỗi n bit mã, được gọi là các chip. Ở đây, ta lấy n=8 thì hệ số trải phổ là 8, nghĩa là thực hiện điều chế trải phổ BPSK. Kết quả tốc độ dữ liệu là 8xR và có dạng xuất hiện ngẫu nhiên (giả nhiễu) như là mã trải phổ. Việc tăng tốc độ dữ liệu lên 8 lần đáp ứng việc mở rộng (với hệ số là 8) phổ của tín hiệu dữ liệu người sử dụng được trải ra. Tín hiệu băng rộng này sẽ được truyền qua các kênh vô tuyến đến đầu cuối thu.





Hình 2- Quá trình trải phổ và giải trải phổ

Trong quá trình giải trải phổ, các chuỗi chip/dữ liệu người sử dụng trải phổ được nhân từng bit với cùng các chip mã 8 đã được sử dụng trong quá trình trải phổ. Như trên hình vẽ tín hiệu người sử dụng ban đầu được khôi phục hoàn toàn.



2.1.3. Kỹ thuật đa truy nhập CDMA

Một mạng thông tin di động là một hệ thống nhiều người sử dụng, trong đó một số lượng lớn người sử dụng chia sẻ nguồn tài nguyên vật lý chung để truyền và nhận thông tin. Dung lượng đa truy nhập là một trong các yếu tố cơ bản của hệ thống. Kỹ thuật trải phổ tín hiệu cần truyền đem lại khả năng thực hiện đa truy nhập cho các hệ thống CDMA. Trong lịch sử thông tin di động đã tồn tại các công nghệ đa truy nhập khác nhau : TDMA, FDMA và CDMA. Sự khác nhau giữa chúng được chỉ ra trong hình 2-2.





Hình 2- Các công nghệ đa truy nhập

Trong hệ thống đa truy nhập theo tần số FDMA, các tín hiệu cho các người sử dụng khác nhau được truyền trong các kênh khác nhau với các tần số điều chế khác nhau. Trong hệ thống đa truy nhập phân chia theo thời gian TDMA, các tín hiệu của người sử dụng khác nhau được truyền đi trong các khe thời gian khác nhau. Với các công nghệ khác nhau, số người sử dụng lớn nhất có thể chia sẻ đồng thời các kênh vật lý là cố định. Tuy nhiên trong hệ thống CDMA, các tín hiệu cho người sử dụng khác nhau được truyền đi trong cùng một băng tần tại cùng một thời điểm. Mỗi tín hiệu người sử dụng đóng vai trò như là nhiễu đối với tín hiệu của người sử dụng khác, do đó dung lượng của hệ thống CDMA gần như là mức nhiễu, và không có con số lớn nhất cố định, nên dung lượng của hệ thống CDMA được gọi là dung lượng mềm.

Hình 2-3 chỉ ra một ví dụ làm thế nào 3 người sử dụng có thể truy nhập đồng thời trong một hệ thống CDMA.



Hình 2- Nguyên lý của đa truy nhập trải phổ

Tại bên thu, người sử dụng 2 sẽ giải trải phổ tín hiệu thông tin của nó trở lại tín hiệu băng hẹp, chứ không phải tín hiệu của bất cứ người nào khác. Bởi vì sự tương quan chéo giữa mã của người sử dụng mong muốn và các mã của người sử dụng khác là rất nhỏ : việc tách sóng kết hợp sẽ chỉ cấp năng lượng cho tín hiệu mong muốn và một phần nhỏ cho tín hiệu của người sử dụng khác và băng tần thông tin.

Độ lợi xử lý và đặc điểm băng rộng của quá trình xử lý đem lại nhiều lợi ích cho các hệ thống CDMA, như hiệu suất phổ cao và dung lượng mềm. Tuy nhiên, tất cả những lợi ích đó yêu cầu việc sử dụng kỹ thuật điều khiển công suất nghiêm ngặt và chuyển giao mềm, để tránh cho tín hiệu của người sử dụng này che thông tin của người sử dụng khác.

2.2. Một số đặc trưng của lớp vật lý trong hệ thống WCDMA.

2.2.1. Các mã trải phổ .

Trong hệ thống trải phổ chuỗi trực tiếp DSSS, các bit dữ liệu được mã hoá với một chuỗi bit giả ngẫu nhiên (PN). Mạng vô tuyến UMTS mạng sử dụng một tốc độ chip cố định là 3.84Mcps đem lại một băng thông sóng mang xấp xỉ 5MHz. Dữ liệu được gửi qua giao diện vô tuyến WCDMA được mã hoá 2 lần trước khi được điều chế và truyền đi. Quá trình này được mô tả trong hình vẽ sau:





Hình 2- Quá trình trải phổ và trộn

Như vậy trong quá trình trên có hai loại mã được sử dụng là mã trộn và mã định kênh.



  • Mã định kênh: là các mã hệ số trải phổ biến đổi trực giao OVSF giữ tính trực giao giữa các kênh có các tốc độ và hệ số trải phổ khác nhau. Các mã lựa chọn được xác định bởi hệ số trải phổ. Cần phải chú ý rằng: Một mã có thể được sử dụng trong cell khi và chỉ khi không có mã nào khác trên đường dẫn từ một mã cụ thể đến gốc của cây mã hoặc là trên một cây con phía dưới mã đó được sử dụng trong cùng một cell. Có thể nói tất cả các mã được chọn lựa sử dụng hoàn toàn theo quy luật trực giao.

  • Mã trộn. Mã trộn được sử dụng trên đường xuống là tập hợp chuỗi mã Gold. Các điều kiện ban đầu dựa vào số mã trộn n. Chức năng của nó dùng để phân biệt các trạm gốc khác nhau. Thông qua mô phỏng, n được xác định là tỉ số giữa tự tương quan và tương quan chéo khi thay đổi số chip bị cắt bớt do thay đổi tỉ số S/N. Kết quả được chỉ ra trong bảng 2-1.


Bảng 2- Quan hệ giữa S/N và số chip bị cắt bớt

Có hai loại mã trộn trên đường lên , chúng dùng để duy trì sự phân biệt giữa các máy di động khác nhau. Cả hai loại đều là mã phức. Mã thứ nhất là mã hoá Kasami rất rộng. Loại thứ hai là mã trộn dài đường lên thường được sử dụng trong cell không phát hiện thấy nhiều người sử dụngtrong một trạm gốc. Đó là chuỗi mã Gold có chiều dài là 241-1.



2.2.2. Phương thức song công.

Hai phương thức song công được sử dụng trong kiến trúc WCDMA: Song công phân chia theo thời gian (TDD) và song công phân chia theo tần số (FDD). Phương pháp FDD cần hai băng tần cho đường lên và đường xuống. Phương thức TDD chỉ cần một băng tần. Thông thường phổ tần số được bán cho các nhà khai thác theo các dải có thể bằng 2x10MHz, hoặc 2x15MHz cho mỗi bộ điều khiển. Mặc dù có một số đặc điểm khác nhau nhưng cả hai phương thức đều có tổng hiệu suất gần giống nhau. Chế độ TDD không cho phép giữa máy di động và trạm gốc có trễ truyền lớn, bởi vì sẽ gây ra đụng độ giữa các khe thời gian thu và phát. Vì vậy mà chế độ IDD phù hợp với các môi trường có trễ truyền thấp, cho nên chế độ TDD vận hành ở các pico cell. Một ưu điểm của TDD là tốc độ dữ liệu đường lên và đường xuống có thể rất khác nhau, vì vậy mà phù hợp cho các ứng dụng có đặc tính bất đối xứng giữa đường lên và đường xuống , chẳng hạn như Web browsing. Trong quá trình hoạch định mạng, các ưu điểm và nhược điểm của hai phương pháp này có thể bù trừ. Đồ án này chỉ tập trung nghiên cứu chế độ FDD.

Hình dưới đây chỉ ra sơ đồ phân bố phổ tần số của hệ thống UMTS Châu Âu.



Hình 2- Phân bố phổ tần cho UMTS châu Âu.

2.2.3. Dung lượng mạng.

Kết quả của việc sử dụng công nghệ đa truy nhập trải phổ CDMA là dung lượng của các hệ thống UMTS không bị giới hạn cứng, có nghĩa là một người sử dụng có thể bổ sung mà không gây ra nghẽn bởi số lượng phần cứng hạn chế. Hệ thống GSM có số lượng các liên kết và các kênh cố định chỉ cho phép mật độ lưu lượng lớn nhất đã được tính toán và hoạch định trước nhờ sử dụng các mô hình thống kê. Trong hệ thống UMTS bất cứ người sử dụng mới nào sẽ gây ra một lượng nhiễu bổ sung cho những người sử dụng đang có mặt trong hệ thống, ảnh hưởng đến tải của hệ thống. Nếu có đủ số mã thì mức tăng nhiễu do tăng tải là cơ cấu giới hạn dung lượng chính trong mạng. Việc các cell bị co hẹp lại do tải cao và việc tăng dung lượng của các cell mà các cell lân cận nó có mức nhiễu thấp là các hiệu ứng thể hiện đặc điểm dung lượng xác định nhiễu trong các mạng CDMA. Chính vì thế mà trong các mạng CDMA có đặc điểm “dung lượng mềm”. Đặc biệt, khi quan tâm đến chuyển giao mềm thì các cơ cấu này làm cho việc hoạch định mạng trở nên phức tạp.



2.2. 4. Phân tập đa đường- Bộ thu RAKE.

Truyền sóng vô tuyến trong kênh di động mặt đất được đặc trưng bởi các sự phản xạ, sự suy hao khác nhau của năng lượng tín hiệu. Các hiện tượng này gây ra do các vật cản tự nhiên như toà nhà, các quả đồi…dẫn đến hiệu ứng truyền sóng đa đường.





Hình 2- Truyền sóng đa đường

Hiệu ứng đa đường thường gây ra nhiều khó khăn cho các hệ thống truyền dẫn vô tuyến. Một trong những ưu điểm của các hệ thống DSSS là tín hiệu thu qua các nhánh đa đường với trễ truyền khác nhau và cường độ tín hiệu khác nhau lại có thể cải thiện hiệu suất của hệ thống. Để kết hợp các thành phần từ các nhánh đa đường một cách nhất quán, cần thiết phải tách đúng các thành phần đó. Trong các hệ thống WCDMA, bộ thu RAKE được sử dụng để thực hiện chức năng này. Một bộ thu RAKE bao gồm nhiều bộ thu được gọi là “finger”. Bộ thu RAKE sử dụng các bộ cân bằng và các bộ xoay pha để chia năng lượng của các thành phần tín hiệu khác nhau có pha và biên độ thay đổi theo kênh trong sơ đồ chòm sao. Sau khi điều chỉnh trễ thời gian và cường độ tín hiệu, các thành phần khác nhau đó được kết hợp thành một tín hiệu với chất lượng cao hơn. Quá trình này được gọi là quá trình kết hợp theo tỉ số lớn nhất (MRC), và chỉ có các tín hiệu với độ trễ tương đối cao hơn độ rộng thời gian của một chip mới được kết hợp. Quá trình kết hợp theo tỉ số lớn nhất sử dụng tốc độ chip là 3.84Mcps tương ứng với 0.26µs hoặc là chênh lệch về độ dài đường dẫn là 78m. Phương pháp này giảm đáng kể hiệu ứng phadinh bởi vì khi các kênh có đặc điểm khác nhau được kết hợp thì ảnh hưởng của phadinh nhanh được tính bình quân. Độ lợi thu được từ việc kết hợp nhất quán các thành phần đa đường tương tự với độ lợi của chuyển giao mềm có được bằng cách kết hợp hai hay nhiều tín hiệu trong quá trình chuyển giao.



2.2.5. Các kênh giao diện vô tuyến UTRA FDD.

Giao diện vô tuyến UTRA FDD có các kênh logic, chúng được ánh xạ vào các kênh chuyển vận, các kênh chuyển vận lại ánh xạ vào kênh vật lý. Hình vẽ sau chỉ ra sơ đồ các kênh và sự ánh xạ của chúng vào các kênh khác.





Hình 2- Sơ đồ ánh xạ giữa các kênh khác nhau.

Phụ lục B sẽ chỉ ra chi tiết các kênh UTRA khác nhau.



2.2.6. Trạng thái cell.

Nhìn dưới góc độ UTRA, UE có thể ở chế độ “rỗi” hoặc ở chế độ “kết nối”. Trong chế độ “rỗi”, máy di động được bật và bắt được kênh điều khiển của một cell nào đó, nhưng phần UTRAN của mạng không có thông tin nào về UE. UE chỉ có thể được đánh địa chỉ bởi một thông điệp (chẳng hạn như thông báo tìm gọi) được phát quảng bá đến tất cả người sử dụng trong một cell. Trạng thái chế độ “rỗi” cũng được gọi là “trạng thái nghỉ trong cell”. UE có thể chuyển sang chế độ “kết nối” bằng cách yêu cầu thiết lập một kết nối RRC. Hình vẽ sau đây chỉ ra các trạng thái và sự chuyển tiếp các trạng thái cho một UE bao gồm cả các chế độ GSM/GPRS.





Hình 2- Các chế độ của UE và các trạng thái điều khiển tài nguyên vô tuyến

Nhìn chung việc ấn định các kênh khác nhau cho một người sử dụng và việc điểu khiển tài nguyên vô tuyến được thực hiện bởi giao thức Quản lý tài nguyên vô tuyến. Trong chế độ “kết nối” của UTRA, có 4 trạng thái RRC mà UE có thể chuyển đổi giữa chúng: Cell DCH, Cell FACH, Cell PCH và URA PCH.

Trong trạng thái Cell DCH, UE được cấp phát một kênh vật lý riêng trên đường lên và đường xuống.

Trong 3 trạng thái khác UE không được cấp phát kênh riêng. Trong trạng thái Cell FACH, UE giám sát một kênh đường xuống và được cấp phát một kênh FACH trên đường lên. Trong trạng thái này, UE thực hiện việc chọn lựa lại cell. Bằng cách gửi thông điệp cập nhật cell, RNC biết được vị trí của UE ở mức cell.

Trong trạng thái Cell PCH và URA PCH, UE chọn lựa kênh tìm gọi (PCH) và sử dụng việc tiếp nhận không liên tục (DRX) để giám sát kênh PCH đã chọn lựa thông qua một kênh liên kết PICH. Trên đường lên không có hoạt động nào liên quan đến trạng thái này. Sự khác nhau giữa 2 trạng thái này như sau: Trong trạng thái Cell PCH vị trí của UE được nhận biết ở mức cell tuỳ theo việc thực hiện cập nhật cell cuối cùng. Trong trạng thái URA PCH, vị trí của UE được nhận biết ở mức vùng đăng ký UTRAN (URA) tuỳ theo việc thực hiện cập nhật URA cuối cùng trong trạng thái Cell FACH.

2.2.7. Cấu trúc Cell.

Trong suốt quá trình thiết kế của hệ thống UMTS cần phải chú ý nhiều hơn đến sự phân tập của môi trường người sử dụng. Các môi trường nông thôn ngoài trời, đô thị ngoài trời, hay đô thị trong nhà được hỗ trợ bên cạnh các mô hình di động khác nhau gồm người sử dụng tĩnh, người đi bộ đến người sử dụng trong môi trường xe cộ đang chuyển động với vận tốc rất cao. Để yêu cầu một vùng phủ sóng rộng khắp và khả năng roaming toàn cầu, UMTS đã phát triển cấu trúc lớp các miền phân cấp với khả năng phủ sóng khác nhau. Lớp cao nhất bao gồm các vệ tinh bao phủ toàn bộ trái đất; Lớp thấp hơn hình thành nên mạng truy nhập vô tuyến mặt đất UTRAN. Mỗi lớp được xây dựng từ các cell, các lớp càng thấp các vùng địa lý bao phủ bởi các cell càng nhỏ. Vì vậy các cell nhỏ được xây dựng để hỗ trợ mật độ người sử dụng cao hơn. Các cell macro đề nghị cho vùng phủ mặt đất rộng kết hợp với các micro cell để tăng dung lượng cho các vùng mật độ dân số cao. Các cell pico được dùng cho các vùng được coi như là các “điểm nóng” yêu cầu dung lượng cao trong các vùng hẹp (ví dụ như sân bay…). Những điều này tuân theo 2 nguyên lý thiết kế đã biết trong việc triển khai các mạng tế bào: các cell nhỏ hơn có thể được sử dụng để tăng dung lượng trên một vùng địa lý, các cell lớn hơn có thể mở rộng vùng phủ sóng.

Do các nhu cầu và các đặc tính của một môi trường văn phòng trong nhà khác với yêu cầu của người sử dụng đang đi với tốc độ cao tại vùng nông thôn, diễn đàn UMTS đã phát triển 6 môi trường hoạt động. Đối với mỗi mô hình mật độ người sử dụng có thể trên một km2 và các loại cell được dự đoán cho các mô hình có tính di động thấp, trung bình, cao.



Hình 2- Cấu

trúc cell UMTS.




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©tieuluan.info 2019
được sử dụng cho việc quản lý

    Quê hương