Tiêu chuẩn quốc gia



tải về 1.32 Mb.
trang1/11
Chuyển đổi dữ liệu20.04.2018
Kích1.32 Mb.
  1   2   3   4   5   6   7   8   9   10   11

TIÊU CHUẨN QUỐC GIA

TCVN 8006-4 : 2013

ISO 16269-4:2010

GIẢI THÍCH CÁC DỮ LIỆU THỐNG KÊ - PHẦN 4: PHÁT HIỆN VÀ XỬ LÝ CÁC GIÁ TRỊ BẤT THƯỜNG



Statistical interpretation of data - Part 4: Detection and treatment of outliers

Lời nói đầu

TCVN 8006-4:2013 hoàn toàn tương đương với ISO 16269-4:2010;

TCVN 8006-4:2013 do Ban kỹ thuật tiêu chuẩn quốc gia TCVN/TC 69 Ứng dụng các phương pháp thống kê biên soạn, Tổng cục Tiêu chuẩn Đo lường chất lượng đề nghị, Bộ Khoa học và Công nghệ công bố.

Bộ tiêu chuẩn TCVN 8006, chấp nhận bộ tiêu chuẩn ISO 16269, gồm các tiêu chuẩn dưới đây có tên chung “Giải thích các dữ liệu thống kê”:

- TCVN 8006-4:2013 (ISO 16269-4:2010), Phần 4: Phát hiện và xử lý các giá trị bất thường

- TCVN 8006-6:2009 (ISO 16269-6:2005), Phần 6: Xác định khoảng dung sai thống kê

- TCVN 8006-7:2013 (ISO 16269-6:2001), Phần 7: Trung vị - Ước lượng và khoảng tin cậy

Bộ tiêu chuẩn ISO 16269 còn có tiêu chuẩn sau:



- ISO 16269-8, Statistical interpretation of data - Part 8: Determination of prediction intervals

Lời giới thiệu

Xác định các giá trị bất thường một trong những vấn đề lâu đời nhất trong giải thích dữ liệu. Nguyên nhân của giá trị bất thường bao gồm sai số đo, sai số lấy mẫu, báo cáo thấp đi hoặc báo cáo cao lên có chủ ý các kết quả lấy mẫu, ghi chép sai, giả định phân bố hay mô hình sai cho tập dữ liệu, các quan trắc hiếm, v.v..

Giá trị bất thường có thể bóp méo và giảm thông tin trong nguồn dữ liệu hoặc cơ chế tạo dữ liệu. Trong công nghiệp chế tạo, sự có mặt các giá trị bất thường sẽ làm giảm hiệu lực của thiết kế quá trình/sản phẩm và quy trình kiểm soát chất lượng. Các giá trị bất thường có thể không nhất thiết là xấu hay sai lầm. Trong một số trường hợp, giá trị bất thường có thể mang thông tin thiết yếu và do đó cần được nhận biết để nghiên cứu thêm.

Nghiên cứu và phát hiện giá trị bất thường từ các quá trình đo mang lại hiểu biết tốt hơn về quá trình và phân tích dữ liệu đúng sẽ dẫn đến những kết luận được cải thiện.

Với một lượng lớn tài liệu đề cập đến chủ đề giá trị bất thường, điều đặc biệt quan trọng đối với cộng đồng quốc tế là xác định và chuẩn hóa tập các phương pháp sử dụng trong việc nhận biết và xử lý các giá trị bất thường. Việc áp dụng tiêu chuẩn này cho phép doanh nghiệp và ngành công nghiệp thừa nhận các phân tích dữ liệu do các quốc gia hay tổ chức thành viên tiến hành.

Tiêu chuẩn gồm sáu phụ lục. Phụ lục A đưa ra thuật toán để tính thống kê kiểm nghiệm và các giá trị tới hạn của quy trình phát hiện giá trị bất thường trong tập dữ liệu lấy từ phân bố chuẩn. Phụ lục B, D và E cung cấp các bảng cần thiết để thực hiện các quy trình khuyến nghị. Phụ lục C cung cấp các bảng và lý thuyết thống kê làm cơ sở cho việc vẽ các đồ thị hộp sửa đổi trong phát hiện giá trị bất thường. Phụ lục F đưa ra hướng dẫn có cấu trúc và lưu đồ các quá trình khuyến nghị trong tiêu chuẩn này.


GIẢI THÍCH CÁC DỮ LIỆU THỐNG KÊ - PHẦN 4: PHÁT HIỆN VÀ XỬ LÝ CÁC GIÁ TRỊ BẤT THƯỜNG

Statistical interpretation of data - Part 4: Detection and treatment of outliers

1. Phạm vi áp dụng

Tiêu chuẩn này đưa ra mô tả chi tiết về quy trình kiểm nghiệm thống kê vững chắc và các phương pháp phân tích dữ liệu bằng đồ thị dùng cho việc phát hiện các giá trị bất thường trong dữ liệu thu được từ các quá trình đo. Tiêu chuẩn khuyến nghị ước lượng ổn định vững chắc và quy trình kiểm nghiệm để thỏa hiệp với sự có mặt của các giá trị bất thường.

Tiêu chuẩn này được xây dựng chủ yếu cho việc phát hiện và sự thích ứng của các giá trị bất thường từ dữ liệu đơn biến. Hướng dẫn nhất định cũng được cung cấp đối với dữ liệu đa biến và hồi quy.

2. Thuật ngữ và định nghĩa

Tiêu chuẩn này áp dụng các thuật ngữ, định nghĩa dưới đây



2.1. Mẫu (sample)

Tập dữ liệu (data set)

Phân tập tổng thể gồm một hoặc nhiều đơn vị mẫu.

CHÚ THÍCH 1: Đơn vị mẫu có thể là cá thể, các trị số hoặc thậm chí là các thực thể trừu tượng phụ thuộc vào tổng thể quan tâm.

CHÚ THÍCH 2: Mẫu từ một tổng thể phân bố chuẩn (2.22), gamma (2.23), hàm mũ (2.24), Weibull (2.25), loga chuẩn (2.26) hay cực trị loại I (2.27) thường được đề cập tương ứng là mẫu chuẩn, gamma, hàm mũ, Weibull, loga chuẩn hay cực trị loại I.



2.2. Giá trị bất thường (outlier)

Thành phần của phân tập nhỏ các quan trắc dường như là không khớp với phần còn lại của mẫu (2.1) đã cho.

CHÚ THÍCH 1: Việc phân loại quan trắc hoặc phân tập các quan trắc là giá trị bất thường chỉ có quan hệ với mô hình được chọn cho tổng thể từ đó tập dữ liệu hình thành. Những quan trắc này không được coi là các thành phần thực sự của tổng thể chính.

CHÚ THÍCH 2: Giá trị bất thường có thể bắt nguồn từ tổng thể cơ sở khác hoặc là kết quả của sự ghi chép không chính xác hoặc sai số đo thô.

CHÚ THÍCH 3: Phân tập có thể gồm một hoặc nhiều quan trắc.

2.3. Che khuất (masking)

Sự xuất hiện của nhiều hơn một giá trị bất thường (2.2) gây khó khăn cho việc phát hiện từng giá trị bất thường.



2.4. Tỷ lệ ngoại vi (some-outside rate)

Xác suất để một hoặc nhiều quan trắc trong mẫu không pha tạp bị phân loại nhầm là giá trị bất thường (2.2).



2.5. Phương pháp thỏa hiệp giá trị bất thường (outlier accommodation method)

Phương pháp không nhạy đối với sự có mặt của các giá trị bất thường (2.2) khi đưa ra kết luận về tổng thể.



2.6. Ước lượng bền (resistant estimation)

Phương pháp ước lượng đưa ra các kết quả chỉ thay đổi đôi chút khi thay thế một phần nhỏ các giá trị dữ liệu trong tập dữ liệu (2.1), có thể với giá trị dữ liệu rất khác biệt với dữ liệu ban đầu.



2.7. Ước lượng ổn định (robust estimation)

Phương pháp ước lượng không nhạy với sai lệch nhỏ so với giả định về mô hình xác suất cơ sở của dữ liệu.

CHÚ THÍCH: Ví dụ là phương pháp ước lượng áp dụng tốt cho phân bố chuẩn (2.22) và vẫn khá tốt nếu phân bố thực tế đối xứng lệch hoặc nặng đuôi. Các loại phương pháp như vậy bao gồm ước lượng L [trung bình có trọng số của thống kê thứ tự (2.10)] và phương pháp ước lượng M (xem Tài liệu tham khảo [9])

2.8. Thứ hạng (rank)

Vị trí của giá trị quan trắc trong một tập hợp các giá trị quan trắc sắp xếp theo thứ tự.

CHÚ THÍCH 1: Các giá trị quan trắc được sắp xếp theo thứ tự tăng (đếm từ dưới lên) hoặc thứ tự giảm (đếm từ trên xuống).

CHÚ THÍCH 2: Với mục đích của tiêu chuẩn này, các giá trị quan trắc giống nhau được phân thứ hạng như chúng khác nhau đôi chút.



2.9. Độ sâu (depth)

<đồ thị hộp> giá trị nhỏ hơn trong hai thứ hạng (2.8) được xác định bằng cách tính từ giá trị nhỏ nhất của mẫu (2.1) trở lên hoặc tính từ giá trị lớn nhất trở xuống.

CHÚ THÍCH 1: Độ sâu có thể không phải là giá trị nguyên (xem Phụ lục C).

CHÚ THÍCH 2: Đối với tất cả các giá trị tóm lược không phải là trung vị (2.11), một độ sâu cho xác định hai giá trị (dữ liệu), một giá trị dưới trung vị và giá trị kia trên trung vị. Ví dụ, hai giá trị dữ liệu với độ sâu 1 là giá trị nhỏ nhất (tối thiểu) và giá trị lớn nhất (tối đa) trong mẫu (2.1) đã cho.

2.10. Thống kê thứ tự (order statistic)

Thống kê xác định bởi thứ tự của nó trong một sắp xếp không giảm của các biến ngẫu nhiên.

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 1.9]

CHÚ THÍCH 1: Cho giá trị quan trắc của một mẫu ngẫu nhiên {x1, x2,…, xn}. Sắp xếp lại các giá trị quan trắc theo thứ tự không giảm được ấn định là x(1)x(2) ≤ … ≤ x(k) ≤ … ≤ x(n); khi đó x(k) là giá trị quan trắc của thống kê thứ tự thứ k trong mẫu cỡ n.

CHÚ THÍCH 2: Trong thực tế, lập được các thống kê thứ tự cho lượng mẫu (2.1) là việc sắp xếp dữ liệu như được mô tả trong chú thích 1.

2.11. Trung vị (median)

Trung vị mẫu (sample median)

Trung vị của một tập hợp số (median of a set of numbers)

Q2

Thống kê thứ tự (2.10) thứ [(n + 1)/2], nếu cỡ mẫu n là lẻ; tổng của thống kê thứ tự thứ [n/2] và thứ [(n/2) + 1] chia cho 2, nếu cỡ mẫu n là chẵn.

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 1.13]

CHÚ THÍCH: Trung vị mẫu là tứ phân vị thứ hai (Q2)

2.12. Tứ phân vị thứ nhất (first quartile)

Tứ phân vị mẫu dưới (sample lower quartile)

Q1

Đối với số lượng quan trắc lẻ, là trung vị (2.11) của (n - 1)/2 giá trị quan trắc nhỏ nhất, đối với số lượng quan trắc chẵn, là trung vị của n/2 giá trị quan trắc nhỏ nhất.

CHÚ THÍCH 1: Có nhiều định nghĩa khác nhau trong tài liệu về từ phân vị mẫu, đưa ra các kết quả hơi khác nhau. Định nghĩa này được chọn vì dễ ứng dụng cũng như vì nó được sử dụng rộng rãi.

CHÚ THÍCH 2: Các khái niệm như là điểm bản lề hoặc phần tư (2.19 và 2.20) là các biến phổ biến của tứ phân vị. Trong một số trường hợp (xem Chú thích 3 cho 2.19), tứ phân vị thứ nhất và phần tư dưới (2.19) giống hệt nhau.



2.13. Tứ phân vị thứ ba (third quartile)

Tứ phân vị mẫu trên (sample upper quartile)



Q3

Đối với số lượng quan trắc lẻ, là trung vị của (n - 1)/2 giá trị quan trắc lớn nhất; đối với số lượng quan trắc chẵn, là trung vị của n/2 giá trị quan trắc lớn nhất.

CHÚ THÍCH 1: Có nhiều định nghĩa khác nhau trong tài liệu về tứ phân vị mẫu, đưa ra các kết quả hơi khác nhau. Định nghĩa này được chọn vì dễ ứng dụng cũng như vì nó được sử dụng rộng rãi.

CHÚ THÍCH 2: Các khái niệm như là điểm bản lề hoặc phần tư (2.19 và 2.20) là các biến thể phổ biến của tứ phân vị. Trong một số trường hợp (xem chú thích 3 cho 2.20), tứ phân vị thứ ba và phần tư trên (2.20) giống hệt nhau.



2.14. Khoảng tứ phân vị (interquartile range)

IQR

Hiệu giữa tứ phân vị thứ ba (2.13) và tứ phân vị thứ nhất (2.12)

CHÚ THÍCH 1: Đây là một trong những thống kê được sử dụng rộng rãi để mô tả khoảng của tập dữ liệu.

CHÚ THÍCH 2: Hiệu giữa phần tư trên (2.20) và phần tư dưới (2.19) được gọi là khoảng thứ tư và đôi khi được sử dụng thay cho khoảng tứ phân vị.



2.15. Năm số tóm lược (five-number summary)

Số nhỏ nhất, tứ phân vị thứ nhất (2.12), trung vị (2.11), tứ phân vị thứ ba (2.13) và số lớn nhất.

CHÚ THÍCH: Năm số tóm lược cung cấp thông tin bằng số về vị trí, độ trải và độ rộng.

2.16. Đồ thị hộp (box plot)

Trình bày bằng đồ thị nằm ngang hoặc thẳng đứng của năm số tóm lược (2.15).

CHÚ THÍCH 1: Đối với đồ thị nằm ngang, tứ phân vị thứ nhất (2.12) và tứ phân vị thứ ba (2.13) được vẽ tương ứng là bên trái và bên phải của hộp, trung vị (2.11) được vẽ là một vạch đứng trong hộp, các nét kéo dài từ tứ phân vị thứ nhất xuống đến giá trị nhỏ nhất hoặc trên rào chắn dưới (2.17) và từ tứ phân vị thứ ba lên đến giá trị lớn nhất tại hoặc dưới rào chắn trên (2.18), và (các) giá trị quá rào chắn trên và rào chắn dưới được đánh dấu riêng là giá trị bất thường (2.2). Đối với đồ thị thẳng đứng, tứ phân vị thứ nhất và tứ phân vị thứ ba được vẽ tương ứng là phần đáy và phần đỉnh của hộp, trung vị được vẽ là một vạch ngang trong hộp, nét kéo dài từ tứ phân vị thứ nhất xuống đến giá trị nhỏ nhất tại hoặc trên rào chắn dưới và từ tứ phân vị thứ ba lên đến giá trị lớn nhất tại hoặc dưới rào chắn trên và (các) giá trị vượt quá rào chắn trên và rào chắn dưới được đánh dấu là (các) giá trị bất thường.

CHÚ THÍCH 2: Chiều rộng hộp và chiều dài rìa của đồ thị hộp cung cấp thông tin bằng đồ thị về vị trí, độ trải, độ bất đối xứng, độ dài đuôi và các giá trị bất thường của mẫu. So sánh giữa các đồ thị hộp và hàm mật độ của phân bố a) đều, b) hình chuông, c) bất đối xứng phải và d) bất đối xứng trái được đưa ra trong các đồ thị ở Hình 1. Trong mỗi phân bố, có một biểu đồ tần số được trình bày phía trên đồ thị hộp.

CHÚ THÍCH 3: Đồ thị hộp được xây dựng với rào chắn dưới (2.17) và rào chắn trên (2.18) được đánh giá bằng cách lấy k là giá trị dựa trên cỡ mẫu n và kiến thức về sự phân bố phổ biến của dữ liệu mẫu được gọi là đồ thị hộp sửa đổi (xem ví dụ, Hình 2). Cấu trúc của một đồ thị hộp sửa đổi được nêu trong 4.4.






a) Phân bố đều

b) phân bố hình vuông





c) Phân bố bất đối xứng bên phải

d) Phân bố bất đối xứng bên trái

CHÚ DẪN:

X giá trị dữ liệu Y tần số

Trong mỗi phân bố, biểu đồ tần số được trình bày phía trên đồ thị hộp.

Hình 1 - Đồ thị hộp và biểu đồ cột đối với phân bố a) đều, b) hình chuông, c) phân bố đối xứng bên phải và d) đối xứng bên trái



Hình 2 - Đồ thị hộp được chỉnh sửa với rào chắn dưới và trên

2.17. Rào chắn dưới (lower fence)

Ngưỡng giá trị bất thường dưới (lower outlier cut-off)

Giá trị liền kề dưới (lower adjacent value)

Giá trị trong đồ thị hộp (2.16) nằm cách k lần khoảng tứ phân vị (2.14) ở dưới tứ phân vị thứ nhất (2.12), với giá trị k được xác định trước.

CHÚ THÍCH: Trong phần mềm thống kê có bản quyền, rào chắn dưới thường được lấy là Q1 - k (Q3 - Q1) với k được lấy là 1,5 hoặc 3,0. Trước đây, rào chắn này được gọi là “rào chắn dưới bên trong” khi k là 1,5 và “rào chắn dưới bên ngoài” khi k là 3,0.

2.18. Rào chắn trên (upper fence)

Ngưỡng giá trị bất thường trên (upper outlier cut-off)

Giá trị liền kề trên (upper adjacent value)

Giá trị trong đồ thị hộp nằm cách k lần khoảng tứ phân vị (2.14) ở trên tứ phân vị thứ ba (2.13), với giá trị k được xác định trước.

CHÚ THÍCH: Trong phần mềm thống kê có bản quyền, rào chắn trên thường được lấy là Q3 + k (Q3 - Q1) với k được lấy là 1,5 hoặc 3,0. Trước đây, rào chắn này được gọi là “rào chắn trên bên trong” khi k là 1,5 và “rào chắn trên bên ngoài” khi k là 3,0.

2.19. Phần tư dưới (lower fourth)

xL:n

Đối với tập giá trị quan trắc x(1) ≤ x(2) ≤ … ≤ x(n), là đại lượng 0,5 [x(i) + x(i + 1)] khi f = 0 hoặc x(i + 1) khi f > 0, trong đó i là phần nguyên của n/4 và f là phân phân số của n/4.

CHÚ THÍCH 1: Định nghĩa này về phần tư dưới được sử dụng để xác định giá trị khuyến nghị của kLkU nêu trong Phụ lục C và là giá trị mặc định hoặc tùy chọn trong một số phần mềm thống kê được sử dụng rộng rãi.

CHÚ THÍCH 2: Phần tư dưới và phần tư trên (2.20) là một cặp đôi khi được gọi là điểm bản lề.

CHÚ THÍCH 3: Phần tư dưới đôi khi được gọi là tứ phân vị thứ nhất (2.12).

CHÚ THÍCH 4: Khi f = 0; 0,5 hoặc 0,75, phần tư dưới giống như tứ phân vị thứ nhất. Ví dụ:



Cỡ mẫu
n

i = phần nguyên của n/4

f = phần phân số của n/4

Tứ phân vị thứ nhất

Phần tư dưới

9

2

0,25

[x(2) + x(3)]/2

x(3)

10

2

0,50

x(3)

x(3)

11

2

0,75

x(3)

x(3)

12

3

0

[x(3) + x(4)]/2

[x(3) + x(4)]/2

2.20. Phần tư trên (upper fourth)

xU:n

Đốivới tập giá trị quan trắc x(1) ≤ x(2) ≤ … ≤ x(n), là đại lượng 0,5 [x(n - i) + x(n - i + 1)] khi f = 0 hoặc x(n-i) khi f > 0, nếu i là phần nguyên của n/4 và f là phần phân số của n/4.

CHÚ THÍCH 1: Định nghĩa này về phần tư trên được sử dụng để xác định giá trị khuyến nghị của kLkU nêu trong Phụ lục C và là giá trị mặc định hoặc tùy chọn trong một số phần mềm thống kê được sử dụng rộng rãi.

CHÚ THÍCH 2: Phần tư dưới (2.19) và phần tư trên là một cặp đôi khi được gọi là điểm bản lề.

CHÚ THÍCH 3: Phần tư trên đôi khi được đề cập đến như là tứ phân vị thứ ba (2.13).

CHÚ THÍCH 4: Khi f = 0; 0,5 hoặc 0,75, phần tư trên đúng bằng tứ phân vị thứ ba. Ví dụ:



Cỡ mẫu
n

i = phần nguyên của n/4

f = phần phân số của n/4

Tứ phân vị thứ nhất

Phần tư dưới

9

2

0,25

[x(7) + x(8)]/2

x(7)

10

2

0,50

x(8)

x(8)

11

2

0,75

x(8)

x(9)

12

3

0

[x(9) + x(10)]/2

[x(9) + x(10)]/2

2.21. Sai lầm loại I (type I error)

Bác bỏ giả thuyết không trong khi trên thực tế giả thuyết không là đúng.

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 1.46]

CHÚ THÍCH 1: Sai lầm loại I là một quyết định sai. Do đó, mong muốn duy trì xác suất đưa ra quyết định sai như vậy càng nhỏ càng tốt.

CHÚ THÍCH 2: Có khả năng trong một số tình huống (ví dụ, phép kiểm nghiệm tham số nhị phân p), mức ý nghĩa quy định trước 0,05 là không thể đạt được do sự rời rạc của các kết quả.

2.22. Phân bố chuẩn (normal distribution)

Phân bố Gaussian (Gaussian distribution)

Phân bố liên tục có hàm mật độ xác suất



Trong đó - < x <  và với các tham số - < µ <  và > 0

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 2.50]

CHÚ THÍCH 1: Tham số vị trí µ là trung bình và tham số thang đo là độ lệch chuẩn của phân bố chuẩn.

CHÚ THÍCH 2: Mẫu chuẩn là một mẫu (2.1) ngẫu nhiên, được lấy từ một tổng thể tuân theo phân bố chuẩn.

2.23. Phân bố gama (gamma distribution)

Phân bố liên tục có hàm mật độ xác suất



trong đó x > 0 và các tham số  > 0,  > 0

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 2.56]

CHÚ THÍCH 1: Phân bố gamma được sử dụng trong các ứng dụng liên quan tới độ tin cậy đối với mô hình thời gian tính đến khi hỏng. Phân bố này bao gồm phân bố hàm mũ (2.24) là trường hợp đặc biệt cũng như các trường hợp khác có tỷ lệ hỏng tăng theo tuổi đời.

CHÚ THÍCH 2: Trung bình của phân bố gamma là . Phương sai của phân bố gamma là 2.

CHÚ THÍCH 3: Mẫu gamma là mẫu (2.1) ngẫu nhiên, được lấy từ một tổng thể tuân theo phân bố gamma.



2.24. Phân bố hàm mũ (exponential distribution)

Phân bố liên tục có hàm mật độ xác suất



f(x) = -1 exp (-x / )

trong đó x > 0 với tham số > 0

[TCVN 8244-1:2010 (iso 3534-1:2006), định nghĩa 2.58]

CHÚ THÍCH 1: Phân bố hàm mũ cung cấp cơ sở cho các ứng dụng liên quan đến độ tin cậy, tương ứng với trường hợp “không lão hóa” hoặc tính chất không có nhớ.

CHÚ THÍCH 2: Trung bình của phân bố hàm mũ là . Phương sai của phân bố hàm mũ là 2.

CHÚ THÍCH 3: Mẫu hàm mũ là mẫu (2.1) ngẫu nhiên, được lấy từ một tổng thể tuân theo phân bố hàm mũ.



2.25. Phân bố Weibull (Weibull distribution)

Phân bố cực trị loại III (type III extreme-value distribution)

Phân bố liên tục có hàm mật độ xác suất



Trong đó x > với các tham số - < < , > 0, > 0

[TCVN 8244-1:2010 (ISO 3534-1:2006), định nghĩa 2.63]

CHÚ THÍCH 1: Ngoài việc dùng như một trong ba phân bố giới hạn có thể có của thống kê thứ tự cực trị, phân bố Weibull chiếm vị trí quan trọng trong các ứng dụng khác nhau, đặc biệt là về độ tin cậy và kỹ thuật. Phân bố Weibull đã chứng tỏ cung cấp sự phù hợp áp dụng cho nhiều loại tập dữ liệu khác nhau.

CHÚ THÍCH 2: Tham số là tham số vị trí hoặc tham số ngưỡng theo nghĩa là giá trị nhỏ nhất có thể có được trong phân bố Weibull. Tham số  là một tham số thang đo (liên quan đến độ lệch chuẩn của biến Weibull). Tham số là tham số định dạng.

CHÚ THÍCH 3: Mẫu Weibull là mẫu (2.1) ngẫu nhiên, được lấy từ tổng thể tuân theo phân bố Weibull.





Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   10   11


Cơ sở dữ liệu được bảo vệ bởi bản quyền ©tieuluan.info 2019
được sử dụng cho việc quản lý

    Quê hương